Groupe des classes d'idéaux

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la théorie des corps de nombres algébriques fait apparaître un groupe abélien fini construit à partir de chaque tel corps : son groupe des classes d'idéaux.

Sommaire

[modifier] Histoire et origine du groupe des classes d'idéaux

Les premiers groupes de classes rencontrés en mathématiques furent des groupes de classes de formes quadratiques : dans le cas des formes quadratiques binaires, dont l'étude a été faite par le mathématicien allemand Gauss, une loi de composition est définie sur certaines classes d'équivalence de formes. On obtient ainsi un groupe abélien fini.

Plus tard au XIXe siècle, Kummer travailla à une théorie des corps cyclotomiques. Il comprit alors qu'il y avait une bonne raison pour que les tentatives de donner une démonstration complète du cas général du dernier théorème de Fermat par de simples méthodes de factorisation utilisant les racines de l'unité échouent : l'absence d'un analogue adéquat du théorème fondamental de l'arithmétique, dans les anneaux engendrés par ces racines de l'unité, était un obstacle majeur. La première étude de cette obstruction à la factorisation se trouve dans le travail de Kummer. L'obstruction obtenue par Kummer est, en langage contemporain, une partie du groupe des classes d'idéaux : en fait, Kummer a isolé la p-torsion dans ce groupe, pour le corps, dit cyclotomique, engendré par les p-racines de l'unité, pour tout nombre premier p, et l'a identifiée comme la raison de l'échec des tentatives classiques de résolution du problème de Fermat (voir nombre premier régulier).

Dedekind formula ensuite le concept d'idéal, que Kummer n'avait pas énoncé. Ce langage donnait un cadre pour l'unification des divers exemples étudiés notamment par Kummer. Il fut montré qu'alors que les anneaux d'entiers algébriques n'ont pas toujours une décomposition unique en facteurs premiers (ils ne sont notamment pas des anneaux idéaux principaux), ils possèdent la propriété que chaque idéal propre admet une unique décomposition comme produit d'idéaux premiers (c’est-à-dire, chaque anneau d'entiers algébrique est un anneau de Dedekind). Le groupe des classes d'idéaux est un outil théorique pour étudier la question : quels idéaux sont des idéaux principaux ? Il mesure en fait le défaut de principalité de l'anneau considéré, et, en particulier, tous les idéaux sont principaux, si et seulement si le groupe des classes d'idéaux (qui est un groupe fini) est réduit à un élément.

[modifier] Développement technique

Si A est un anneau intègre, définissons une relation ~ sur les idéaux non nuls de A par : I ~ J lorsqu'il existe des éléments non nuls a et b de A tels que (a)I = (b)J (ici, la notation (a) signifie l'idéal principal de A constitué de tous les multiples de a. On montre que celle-ci est une relation d'équivalence. Les classes d'équivalences sont appelées les classes d'idéaux de A. Les classes d'idéaux peuvent être multipliées : si [I] désigne la classe d'équivalence de l'idéal I, alors la multiplication [I][J] = [IJ] est correctement définie et est commutative. Les idéaux principaux forment la classes d'idéaux [A] qui sert d'élément neutre pour cette multiplication.

Si A est un anneau d'entiers algébriques OK, ou plus généralement un anneau de Dedekind, la multiplication définie ci-dessus munit l'ensemble des classes d'idéaux d'une structure de groupe abélien : on obtient le groupe des classes d'idéaux de A. La propriété d'existence d'éléments opposés pour la loi de groupe n'est pas immédiate, et nécessite un développement spécifique (voir idéal fractionnaire).

Le groupe des classes d'idéaux est trivial (c.a.d. contient seulement son élément identité) si et seulement si tous les idéaux de A sont principaux. Dans ce sens, le groupe des classes d'idéaux mesure un défaut de principalité de l'anneau A (est-il loin d'être un anneau principal?), et par conséquent a fortiori un défaut de factorialité : lui manque-t-il beaucoup pour que la propriété de décomposition unique en facteurs premiers soit vérifiée ? (les anneaux de Dedekind sont des anneaux factoriels si et seulement s’ils sont des anneaux principaux). Principalité et factorialité sont des propriétés de l'anneau Z des entiers rationnels ; le groupe des classes donne une première indication sur l'éloignement entre l'arithmétique de cet anneau et celle des anneaux d'entiers algébriques.

Le nombre d'éléments du groupe des classes d'idéaux (appelé nombre de classes de A) peut être infini en général. Cependant, si A est un anneau d'entiers algébriques inclus dans une extension finie de Q, un théorème affirme que ce nombre est toujours fini. C'est un des principaux résultats de la théorie algébrique classique des nombres. Le calcul effectif du groupe des classes est complexe. En général; il peut être fait à la main pour les corps de nombres algébriques de petit discriminant, en utilisant les propriétés géométriques de l'anneau. Ce résultat donne l'existence d'une borne telle que dans chaque classe d'idéaux, il existe un représentant, un certain idéal, dont la norme soit plus petite que cette borne. Sachant qu'il n'existe qu'un nombre fini d'idéaux dont la norme soit plus petite qu'une borne donnée, il ne reste plus qu'un nombre fini de combinaisons à tester. Souvent, la borne n'est pas assez fine pour rendre le calcul praticable à la main dans un corps dont le discriminant est grand ; mais les ordinateurs suppléent efficacement le mathématicien dans cette tâche.

Pour continuer à étudier l'arithmétique des anneaux d'entiers algébriques, il faut introduire un autre groupe : le groupe des éléments inversibles, appelé groupe des unités ; dans le cas des entiers rationnels, ce groupe est réduit à 1 et -1. Quelles nouvelles unités trouve-t-on dans les autres anneaux ? L'existence de nouvelles unités est une autre obstruction à ce que l'arithmétique des anneaux d'entiers algébriques soit semblable à celle de Z.

Ces deux obstructions, groupe des classes et groupe des unités peuvent être liées comme suit : définissons une application de K\{0} vers l'ensemble de tous les idéaux fractionnaires différents de zéro de A en envoyant chaque élément du corps vers l'idéal (fractionnaire) principal qu'il engendre. Ceci est un homomorphisme de groupes ; son noyau est le groupe des unités de A, et son conoyau est le groupe des classes d'idéaux de A. La non trivialité de ces groupes, qui mesure la distance entre l'arithmétique de A et celle de Z, est précisément le défaut d'isomorphie de l'application.

L'association à un anneau d'entiers de son groupe des classes est fonctorielle, et le groupe de classes peut être interprété en termes de K-théorie algébrique : K0(A) est le foncteur assignant à A son groupe des classes d'idéaux ; plus précisément, K0(A) = Z x C(A), où C(A) est le groupe de classes. Les groupes Kn pour n plus élevé peuvent aussi être employés et interprétés arithmétiquement en relation avec les anneaux des entiers.

[modifier] Exemples de groupes des classes d'idéaux

Icône de détail Article détaillé : Entier quadratique.

Les premiers anneau d'entiers algébriques contiennent un groupe des classes trivial. C'est le cas des entiers naturels ou des entiers de Gauss, correspondant à l'ensemble Z[i] où Z désigne l'ensemble des entiers naturels et i l'unité imaginaire. D'autres ensembles de cette nature permettent historiquement de résoudre quelques équations diophantiennes : les entiers d'Eisenstein ou ceux de Dirichlet correspondent à cette configuration.

Cette famille d'exemples correspond aux anneaux d'entiers de corps quadratiques, c'est à dire d'extensions quadratiques des nombres rationnels. Une question difficile est celle de l'identification des anneaux de cette nature ayant un groupe des classes trivial. La liste est initialement conjecturée par Carl Friedrich Gauss et démontré par Kurt Heegner ; cependant, la démonstration d'Heegner ne fut pas reconnue jusqu'à ce qu'Harold Stark donne une démonstration en 1967, et que le même Stark montre que sa propre démonstration était en fait équivalente à celle de Heegner. Ce résultat est maintenant connu sous le nom de théorème de Stark-Heegner et est un cas particulier du problème du nombre de classes. D'autres anneaux d'entiers sur des corps quadratiques ne sont pas principaux. L'article détaillé élucide la structure de Z[i√5], qui possède un groupe de classes à deux éléments.

Si K est un corps, alors l'anneau polynomial K[X1, X2, X3, ...] est intègre et possède un ensemble infini dénombrable de classes d'idéaux.

[modifier] Démonstrations

[modifier] Décors

Icône de détail Article détaillé : Idéal fractionnaire.

Ici Q désigne le corps des nombres rationnels, K une extension finie de Q et C le corps des nombres complexes. L'anneau étudié, noté OK est la fermeture intégrale de K, c'est à dire l'ensemble des entiers algébriques contenu dans K. C'est un anneau de Dedekind tel que tout idéal se décompose de manière unique en un produit d'idéaux premiers. Ce résultat s'obtient en adjoignant des idéaux alors appelés fractionnaires, pour obtenir une structure de groupe. Ces propriétés sont analysées dans l'article détaillé.

Les éléments du groupe de Galois du corps de décomposition de K (la plus petite extension de Galois contenant K) sont notés σ1, ... , σd. La numérotation suit l'ordre suivant : les automorphismes à valeurs réels sont numérotés de 1 à r1, si 2r2 désigne le nombre d'automorphismes ayant une composante imaginaire non nul, alors le conjugué de la fonction σr1 + n est σr1 + r2 + n.

L'ensemble KR désigne l'espace vectoriel Rr1 x Cr2 et Σ le morphisme de Q algèbre suivant :

\Sigma : \quad \begin{align}\mathbb K \ & \longrightarrow \mathbb K_{\mathbb R} = \mathbb R^{r_1} \times \mathbb C^{r_2} \\
\alpha \ & \longrightarrow \Sigma(\alpha)= \big(\sigma_1(\alpha),\cdots ,\sigma_{r_1 + r_2}(\alpha)\big) \end{align}

On définit de même une fonction NR de KR à valeur dans R par :

\mathcal N_{\mathbb R} : \quad \begin{align}\mathbb K_{\mathbb R} \ & \longrightarrow \mathbb R \\
x \ & \longrightarrow \mathcal N_{\mathbb R}(x)= |x_1|\cdot \; \cdots \; \cdot |x_{r_1}|\cdot |x_{r_1 +1}|^2\cdot \;\cdots \; \cdot |x_{r_1 + r_2}|^2 \end{align} \quad \text{avec}\quad x =(x_1,\cdots,x_{r_1 + r_2})

La norme NR correspond à la moyenne géométrique des différentes valeurs absolues ou modules si la coordonnée est complexe.

Si NK désigne la fonction qui à un élément α de K associe sa norme relative élément de Q, on obtient le diagramme commutatif :

\begin{matrix} & \mathbb K & \xrightarrow{\Sigma}  & \mathbb K_{\mathbb R} \\
\mathcal N_{\mathbb K /\mathbb Q} & \downarrow &  & \downarrow  & \mathcal N_{\mathbb R} \\
& \mathbb Q & \xrightarrow{|\cdot |} & \mathbb R \end{matrix}

On munit KR de la norme suivante :

\|\cdot\| : \quad \begin{align}\mathbb K_{\mathbb R} \ & \longrightarrow \mathbb R_+ \\
x \ & \longrightarrow \|x\|= |x_1| + \cdots + |x_{r_1}| + 2|x_{r_1 +1}|+\cdots +2|x_{r_1 + r_2}| \end{align}

Enfin, planter exhaustivement le décors suppose d'introduire le discriminant d'une forme bilinéaire dans un Z-module sur un anneau. Il correspond au déterminant d'une matrice qui la représente. Comme les endomorphismes inversibles ont un déterminant aussi inversible et donc égal à +/-1, un changement de base ne modifie pas le discriminant. Ce terme est aussi appliqué à un anneau d'entiers algébriques. La forme bilinéaire associé donne pour valeur du couple (a, b) la trace de l'application linéaire qui à x associe a.b.x, elle porte le nom de forme trace.

[modifier] Lemmes techniques

Soit d la dimension de KR, c'est à dire r1 + 2.r2 alors :

  • La majoration suivante est toujours vérifiée :
\forall x \in \mathbb K_{\mathbb R}\quad |\mathcal N_{\mathbb R}(x)|^{1/d}\le \frac{\|x\|}d

Ce lemme signifie simplement que la moyenne géométrique est plus petite que la moyenne arithmétique.

Soit δ une longueur, c'est à dire un nombre réel positif :

  • Le volume V d'une boule de KR de rayon δ est donné par la formule suivante :
V = 2^{r_1}\left(\frac{\pi}2 \right)^{r_2} \frac {\delta^d}{d!}

Considérons l'image de OK dans KR, c'est un Z module. Son volume fondamental est la mesure de l'aire composée par l'ensemble des vecteurs de coordonnées toutes prises dans l'intervalle [0, 1] si la base choisie est une base du module. Comme tout isomorphisme de Z module possède un déterminant inversible dans Z, l'isomorphisme possède un déterminant égal à +/- 1. Ainsi le volume fondamental est indépendant du choix de la base du module. Ce volume correspond à celui de KR/ Σ(OK). Pour cette raison, on le note Vol (KR/ Σ(OK)). Le troisième lemme technique concerne un volume de cette nature :

  • Soit M un idéal de OK, l'égalité suivante est vérifiée :
\text{Vol}\left(\frac {\mathbb K_{\mathbb R}}{\Sigma (\mathfrak M)}\right) = 2^{-r_2}|\text{discr}(\mathcal O_{\mathbb K})|^{1/2}.\mathcal N_{\mathbb K/\mathbb Q}(\mathfrak M)

La fonction Σ est celle définie au paragraphe précédent.

[modifier] Théorèmes

Une fois les trois lemmes établis le théorème fondamental :

  • Si l'extension K est finie, le groupe des classes des idéaux de OK est fini.

est relativement simple à démontrer. La preuve utilise le résultat intermédiaire :

  • Si M est un idéal non nul de OK, il existe un élément m de M dont la norme relative vérifie la majoration suivante :
\mathcal N_{\mathbb K/\mathbb Q}(m) \le \left(\frac 4\pi\right)^{r_2} \frac {d!}{d^d}|\text{discr}(\mathcal O_{\mathbb K})|^{1/2} \mathcal N_{\mathbb K/\mathbb Q}(\mathfrak M)

Cette proposition est la conséquence directe du théorème de Minkowski et des lemmes précédents. Elle implique le résultat suivant, conséquence du fait que la norme relative est multiplicative :

  • Soit M un idéal non nul de O, la classe de M -1 contient un idéal de norme inférieure à b, avec b défini par :
b= \left(\frac 4\pi\right)^{r_2} \frac {d!}{d^d}|\text{discr}(\mathcal O_{\mathbb K})|^{1/2}

La proposition suivante est immédiate :

  • Soit n un entier strictement positif, il n'existe qu'un nombre fini d'idéaux de norme relative n.

Il n'existe en effet qu'un nombre fini d'anneaux unitaires intègres de cardinal n et qu'un nombre fini de morphismes d'anneaux de OK dans un anneau donné.

Le théorème principal est la conséquence des deux derniers résultats. Il permet de démontrer le résultat suivant :

  • L'anneau OK est factoriel si et seulement s'il est principal.

[modifier] Connexions avec la théorie des corps de classes

La théorie des corps de classes est une branche de la théorie algébriques des nombres qui cherche à classifier toutes les extensions abéliennes d'un corps de nombres algébriques donné, ce qui signifie des extensions de Galois avec un groupe de Galois abélien. En particulier, un magnifique exemple est trouvé dans le corps de classe de Hilbert d'un corps de nombres, qui peut être défini comme l'extension abélienne maximale non ramifiée d'un tel corps. Le corps de classe de Hilbert L d'un corps de nombres K est unique et possède les propriétés suivantes :

  • Chaque idéal d'un anneau d'entiers de K devient principal dans L, c'est-à-dire, si I est un idéal intègre de K alors l'image de I est un idéal principal dans L.
  • L est une extension de Galois de K avec un groupe de Galois isomorphe au groupe des classes d'idéaux de K.

Aucune des propriétés n'est particulièrement facile à démontrer.

[modifier] Voir aussi

Autres langues