Décomposition de Dunford

Un article de Wikipédia, l'encyclopédie libre.

La décomposition de Dunford s'inscrit dans la problématique de la réduction d'endomorphisme. Cette approche consiste à décomposer l'espace vectoriel en une somme directe de sous-espaces stables où l'expression de l'endomorphisme est plus simple.

Ce n'est pas une réduction dans le sens où elle n'est pas maximale. C'est-à-dire qu'il est parfois possible de pousser la décomposition en sous-espaces vectoriels plus petits.

Elle suppose comme hypothèses que l'espace vectoriel est de dimension finie et que le polynôme minimal est scindé, c'est-à-dire qu'il s'exprime comme produit de polynômes du premier degré. C'est toujours le cas si le corps est algébriquement clos, comme par exemple les nombres complexes. Dans le cas ou la propriété n'est pas vérifiée, alors il est possible d'étendre le corps à sa clôture algébrique, et l'espace vectoriel à ce nouveau corps et dans ce contexte d'appliquer la décomposition de Dunford. Le corps des nombres réels se voit par exemple très généralement étendre pour permettre une application de cette décomposition.

La décomposition de Dunford prouve que tout endomorphisme est la somme d'un endomorphisme diagonalisable et d'un endomorphisme nilpotent, les deux endomorphismes commutant.

Cette décomposition est largement appliquée. Elle permet un calcul matriciel souvent rapide. C'est néanmoins souvent sous la forme de la réduction de Jordan qu'elle est utilisée.

Sommaire

[modifier] Théorème

Le théorème de diagonalisabilité permet de déterminer la structure de u quand il admet un polynôme annulateur scindé à racines simples. La décomposition de Dunford s'applique à un cas plus général.

  • Soit u un endomorphisme de E. Si u admet un polynôme minimal scindé, alors il peut s'écrire sous la forme u = d+n avec d diagonalisable et n nilpotent tels que d.n=n.d. De plus d et n sont des polynômes en u.

[modifier] Démonstration de l'existence de d et n

L'idée initiale de cette approche est donnée par la proposition suivante, démontrée dans l'article sur les polynômes d'endomorphismes dans le paragraphe sur les polynômes minimaux :

  • Soit (\mu_i)\; une décomposition en facteurs de degré supérieur ou égal à 1 et premiers entre eux du polynôme minimal \mu\; d'un endomorphisme u. Alors la suite des noyaux (Ker \mu_i(u))\; est une décomposition de l'espace E en somme directe de sous-espaces stables par l'endomorphisme.

Or, si le polynôme minimal est scindé, il peut s'écrire sous la forme:

\mu(X)=\prod_i (X-\lambda_i)^{n_i}\;

Si l'on note E_i\; le noyau de l'endomorphisme (u-\lambda_iId)^{n_i}\;, alors le paragraphe précédent nous indique que la suite (E_i)\; forme une somme directe de l'espace E de sous-espaces non réduits à 0 et stables par l'endomorphisme. On appelle ces sous-espaces les sous-espaces caractéristiques. Nous avons alors les trois propriétés suivantes:

  • L'espace E est somme directe de ces sous-espaces caractéristiques.
  • Les sous-espaces caractéristiques sont non réduits au vecteur nul et stable par l'endomorphisme. La restriction de l'endomorphisme à E_i\; est la somme d'une homothétie de rapport \lambda_i \; et d'un endomorphisme nilpotent d'ordre n_i\;.
  • La suite des (\lambda_i) \; est la suite des valeurs propres (i.e. le spectre de u). Les sous-espaces propres associés sont inclus dans les sous-espaces caractéristiques.

Ces considérations permettent de démontrer la décomposition de Dunford. Elle permettent de plus de démontrer les propriétés suivantes :

  • Le polynôme minimal est le produit des polynômes de degré 1 et de racine les valeurs propres à la puissance l'indice de l'endomorphisme nilpotent associé.
  • Le polynôme caractéristique est le produit des polynômes de degré 1 et de racine les valeurs propres à la puissance la dimension de l'espace caractéristique associé.
  • Le déterminant est égal au produit des valeurs propres élevées à la puissance la dimension de l'espace caractéristique associé.
  • La trace est égale à la somme des valeurs propres pondérées par les dimensions des espaces caractéristiques associés.


[modifier] Approche par les projecteurs

Un résultat notoire de l'approche par les polynômes d'endormorphismes réside dans le fait que la connaissance du polynôme minimal permet de définir une algorithmique fournissant à la fois les projecteurs sur les espaces caractéristiques mais aussi la composante diagonale et nilpotente de l'endomorphisme.

  • La projection sur Ei parallèlement à la somme directe des autres espaces caractéristiques s'exprime comme un polynôme de l'endomorphisme u.
  • La composante diagonale d de l'endomorphisme u s'exprime comme un polynôme de l'endomorphisme u.
  • La composante nilpotente n de l'endomorphisme u s'exprime comme un polynôme de l'endomorphisme u.


[modifier] Cas d'applications

En dimension finie le théorème de Cayley-Hamilton assure que χu(u) = 0χu désigne le polynôme caractéristique de u :

si χu est scindé alors u est décomposable.

C'est en particulier le cas pour tout endomorphisme d'un espace de dimension finie sur un corps algébriquement clos (\mathbb C notamment).

[modifier] Réduction de Jordan

La décomposition de Dunford permet d'obtenir la réduction de Jordan en dimension finie.

d et n commutent donc les sous-espaces propres de d sont stables par n.

La restriction de n au sous-espace propre admet une matrice formée de blocs de Jordan nilpotents ce qui donne, en ajoutant λIp, des blocs de Jordan pour d+n dans une base adaptée. Ainsi on obtient une matrice diagonale par blocs formée de blocs de Jordan en utilisant l'union de ces bases.

Articles d'algèbre linéaire générale
vecteur • scalaire • combinaison linéaire • espace vectoriel
famille de vecteurs sous-espace

colinéarité • indépendance linéaire
famille libre ou liée • rang
famille génératrice • base
théorème de la base incomplète

somme • somme directe
supplémentaire
dimension • codimension
droite • plan • hyperplan

morphismes et notions relatives

application linéaire • noyau • conoyau •  lemme des noyaux
pseudo-inverse•  théorème de factorisation • théorème du rang
équation linéaire • système • élimination de Gauss-Jordan
forme linéaire • espace dual • orthogonalité • base duale
endomorphisme • valeur, vecteur, espace propres • spectre
projecteur • symétrie • diagonalisable • nilpotent

en dimension finie

trace • déterminant • polynôme caractéristique
polynôme d'endomorphisme • théorème de Cayley-Hamilton
polynôme minimal • invariants de similitude
réduction • réduction de Jordan • décomposition de Dunford

matrice
enrichissements de structure

norme • produit scalaire • forme quadratique • topologie
orientation • multiplication • crochet de Lie • différentielle

développements

théorie des matrices • théorie des représentations
analyse fonctionnelle • algèbre multilinéaire
module sur un anneau