Théorème de la boule chevelue

Un article de Wikipédia, l'encyclopédie libre.

Si un champ de vecteurs sur une sphère est symbolisé par des cheveux de longueur constante, le théorème de la boule chevelue stipule que la sphère contient au moins un épi. La figure en contient deux, un sur chaque pôle.
Si un champ de vecteurs sur une sphère est symbolisé par des cheveux de longueur constante, le théorème de la boule chevelue stipule que la sphère contient au moins un épi. La figure en contient deux, un sur chaque pôle.
Sur un tore, la situation est différente.
Sur un tore, la situation est différente.

En mathématiques, le théorème de la boule chevelue est un résultat de topologie algébrique. Il s'applique à une sphère supportant en chaque point un vecteur, imaginé comme un cheveu, tangent à la surface, et jamais nul. Il affirme que la fonction associant à chaque point de la sphère le vecteur admet au moins un point de discontinuité, ce qui revient à dire que la coiffure contient un épi, ou qu'il y a des cheveux nuls, c'est à dire de la calvitie.

De manière plus rigoureuse, un champ de vecteurs continu sur une sphère de dimension paire au moins égale à 2 s'annule en au moins un point.

Ce théorème est démontré pour la première fois par Luitzen Egbertus Jan Brouwer en 1912[1]. Cette approche généralise des résultats démontrés par le passé comme le théorème de Jordan[2] ou les travaux de Leopold Kronecker sur les fonctions continûment différentiables de la sphère réelle de dimension n - 1 dans un espace vectoriel de dimension n[3]. Ces résultats, qui intuitivement se comprennent aisément, imposent, pour une démonstration rigoureuse, des développements parfois techniques. Un exemple archétypal de résultat de même nature est le théorème du point fixe de Brouwer. Il énonce que toute application continue d'une boule d'un espace vectoriel euclidien de dimension finie dans elle même admet un point fixe. Comme on le verra plus bas, le théorème de point fixe de Brouwer peut être déduit du théorème de la boule chevelue.

Sommaire

[modifier] Représentations intuitives du théorème

Intuitivement[4], on peut se représenter une sphère recouverte de cheveux souples et pas frisés, chaque point de la sphère étant la racine d'un cheveu. On considère la projection du cheveu sur le plan tangent à la sphère au point où le cheveu pousse : l'ensemble de ces projections donne une bonne idée d'un champ de vecteurs tangents sur la sphère. On cherche alors à coiffer ces cheveux en les aplatissant sur la surface de la boule, et en évitant les discontinuités: on ne fait pas de raie, on ne permet pas à des cheveux de changer brutalement de direction les uns par rapport aux autres. Le théorème dit que c'est impossible d'arriver à ce résultat. Quoi qu'on fasse, on va causer la formation d'au moins un épi, c'est à dire d'un endroit où un cheveu se dressera.

[modifier] Énoncé

La sphère réelle de dimension n > 0 est la partie de \R^{n+1} des vecteurs de norme euclidienne 1, soit donc :

S_{n} = \{ (x_0, \dots, x_n) \in \mathbb{R}^{n+1}, x_0^2 + \cdots + x_n^2 = 1 \}.

On munit cet ensemble de la topologie induite par la distance euclidienne. Cet espace topologique est une sous-variété connexe et compacte de dimension n. Intuitivement, si v est un vecteur unitaire, donc un point de Sn, la sphère peut au voisinage de v être approchée par l'hyperplan affine de \R^{n+1} passant par v et orthogonal à v ; la dimension se réfère à la dimension de cet hyperplan, qui est un sous-espace affine. Un champ de vecteurs sur Sn peut se définir comme une application X:\;S_n\rightarrow \R^{n+1} telle que pour tout v dans Sn, X(v) soit orthogonal à v. Le champ est dit continu si l'application est continue.

Théorème de la boule chevelue — Si n est un entier pair au moins égal à 2, tout champ de vecteurs continu X sur la sphère réelle Sn s'annule en un point au moins : il existe v (dépendant de X) tel que : X(v) = 0.

En dimension impaire, il existe des champs de vecteurs continus et mieux encore, analytiques, qui ne s'annulent en aucun point. On construit un exemple en identifiant \R^{2n} avec \mathbb{C}^{n}, ce qui fait correspondre à chaque couple de composantes réelles (xk,xn + k) une composante complexe xk + ixn + k. Le vecteur iv est orthogonal au vecteur v pour le produit scalaire euclidien sur \R^{2n} ; donc si v est unitaire, iv est tangent à la sphère, ce qui définit bien un champ de vecteur tangent à la sphère de dimension 2n − 1, et jamais nul.

[modifier] Démonstration visuelle pour la sphère ordinaire

On veut démontrer qu'il ne peut avoir de champ de vecteurs tangent et continu, qui ne s'annule jamais sur la sphère ordinaire dans l'espace à trois dimension. On va raisonner par l'absurde et donc supposer qu'il existe sur la sphère un champ de vecteurs tangent, continu et qui ne s'annule jamais.

L'animal d'expérience est une brave orange, qui sera torturée de multiples façons. On lui dessine un équateur, un cercle polaire arctique et un cercle polaire antarctique, et on convient de ne voyager le long des parallèles que dans la direction de l'est. On dessine un champ de vecteurs tangent dans les régions arctique et antarctique. Ce champ de vecteurs est à peu près de direction constante, et on peut imaginer que c'est le vent. Si cela gêne le lecteur de penser que le vent est à peu près de direction constante sur une région aussi vaste, il suffit de réduire ces régions par la pensée, et comme le champ de vecteurs représentant le vent est supposé continu, il y aura certainement une zone assez petite pour que le vent y souffle dans une direction fixe, à la précision des mesures près.

On introduit alors Marinette. Marinette est une petite fille qui va pouvoir se déplacer le long des parallèles de l'orange, et pour prendre des photos, il a fallu faire une Marinette en papier, collée sur une longue épingle à tête plastique plate.

Bien sûr, on va enfoncer l'épingle-Marinette de multiples fois dans la chair de l'orange, pour faire les photos puis les animations. On n'a pas anesthésié l'orange, qui, dépourvue de système nerveux, paraît insensible à la douleur.

Information Cliquez sur une vignette pour l’agrandir.


Marinette fait le tour de l'orange en se déplaçant vers l'est le long des parallèles et observe la direction d'où vient le vent. Quand elle fait le tour vers l'est du cercle arctique, le vent tourne autour de sa tête comme suit : elle l'a dans le dos, puis il vient de la gauche, puis dans la figure, de la droite et de nouveau dans le dos. Comme Marinette connaît les conventions des mathématiciens, elle dit que, par rapport à elle, le vent fait un tour dans le sens rétrograde, ce qui est la même chose que faire un tour dans le sens des aiguilles d'une montre.

Quand Marinette fait le tour vers l'est du cercle antarctique, elle a le vent dans le dos, puis il vient de la droite, puis elle l'a dans la figure, puis à gauche et de nouveau dans le dos. Donc, par rapport à Marinette, le vent fait un tour dans le sens direct, ce qui est la même chose que dans le sens contraire des aiguilles d'une montre.

Information Cliquez sur une vignette pour l’agrandir.

Puis, Marinette s'assied et réfléchit. Pas besoin de faire effectivement le tour le long de l'équateur pour se représenter ce qui va se passer : si le vent souffle partout le long de l'équateur, alors il va faire un certain nombre de tours autour de Marinette quand elle parcourra son chemin. Elle ne sait pas combien de tours, mais elle sait que ce sera un nombre entier, positif, négatif ou nul. Elle sait aussi que sur tout parallèle où le vent souffle partout, celui-ci fera un nombre entier de tours par rapport à elle. Et comme Marinette a du bon sens, elle se dit que le nombre de tours du vent doit être continu par rapport à la latitude du parallèle. Imaginons que sur un parallèle le vent fasse 5 tours, et que juste un peu plus au nord il n'en fasse que 4 ; dans ce cas, soit le vent s'annule quelque part, soit il est discontinu.

Maintenant, Marinette sait démontrer le théorème de la boule chevelue : si le vent souffle partout sur la terre-orange tout en variant continument, alors son nombre de tours par rapport à un voyageur parcourant vers l'est un parallèle ne dépend pas de la latitude. Mais il fait +1 tour sur un parallèle assez proche du pôle nord et -1 tour sur un parallèle assez proche du pôle sud. Il y a donc une contradiction !

Marinette, retrouvée transie de froid après son escapade autour des cercles arctique et antarctique, a eu deux heures de retenue pour être sortie sans autorisation. Quant à l'orange, pour ne pas laisser de preuves des tortures, elle a été dévorée peu après.[5]

[modifier] Démonstrations

Une démonstration très analytique est due à John Milnor[6]. Dans l'article où il expose la preuve qui va suivre, Milnor évoque la méthode d'Asimov[7], mais l'article d'Asimov fait appel à des notions beaucoup plus avancées que celles qui seront présentées ici, et ne donne par conséquent pas de lumières élémentaires sur la source de cette surprenante démonstration. Une version un peu différente de la démonstration est donnée par C. A. Rogers[8].

La démonstration de Milnor est une démonstration par l'absurde, reposant sur la construction d'une transformation particulière dépendant d'un paramètre réel t et du champ de vecteurs considéré.

Afin de pouvoir utiliser des outils d'analyse, il faut supposer que le champ de vecteurs tangents est continûment différentiable, et donc, à la fin du raisonnement, on se sert d'un processus d'approximation.

La transformation dépendant de t envoie une sphère de rayon r sur une sphère de rayon r\sqrt{1+t^2}. On calcule alors de deux manières différentes le volume de l'image d'une couronne solide par cette transformation. Par la formule du changement de variable dans les intégrales multiples, on obtient une expression polynomiale en t. Par un calcul direct en dimension impaire n + 1, on obtient une expression irrationnelle, puisqu'elle comprend une puissance impaire de \sqrt{1+t^2}, ce qui fournit la contradiction désirée.

D'autres démonstrations sont fondées sur des notions plus savantes de topologie algébrique. Une démonstration classique utilise la Caractéristique d'Euler-Poincaré. C'est un nombre qu'on peut obtenir par des méthodes combinatoires pour des ensembles qu'il est possible d'approcher par triangulation. Il permet dans certains cas (Théorème de Poincaré-Hopf) de compter le nombre de points d'annulation d'un champ de vecteurs sur une variété. Une autre démonstration provient des propriétés de l'homotopie : on peut prouver que sur une sphère de dimension paire, l'application antipodale x\mapsto -x n'est pas homotope à l'identité ; c'est le théorème de Borsuk-Ulam. Enfin, dans le cas de la sphère ordinaire, une démonstration peut se déduire du Lemme de Sperner.


[modifier] Conséquences

Les conséquences du théorème sont nombreuses et ne se limitent pas aux mathématiques.

[modifier] Fusion nucléaire

La forme torique d'un tokamak, ici le Joint european torus est une conséquence du théorème de la boule chevelue.
La forme torique d'un tokamak, ici le Joint european torus est une conséquence du théorème de la boule chevelue.

Une application technologique est donnée par la fusion nucléaire civile. L'objectif est d'obtenir de l'énergie à partir d'une réaction de fusion de même nature que celle qui produit l'énergie des étoiles. Une des difficultés provient du fait que la matière, à l'état de plasma, doit être confinée à une température et une pression trop forte pour qu'aucun matériau ne puisse résister.

Une solution envisagée est le confinement du plasma par un champ magnétique. On parle de confinement "magnétique", par opposition au confinement dit "inertiel", également en cours d'expérimentation, qui ne repose pas sur l'électromagnétisme mais sur des techniques à base de lasers. Un exemple plus précis pourrait être le tokamak, littéralement la contraction (en Russe) de "Chambre de confinement magnétique toroïdale". Si une forme sphérique semble la solution la plus naturelle pour ce type de réacteur, le théorème de la boule chevelue implique qu'une telle géométrie est impossible. Il existerait en effet un point à la surface où le champ magnétique de confinement s'annulerait. En un tel point, le plasma ne serrait plus confiné par le champ magnétique, et l'objectif de réaction entretenue ne serait pas atteint.

C'est pour cette raison que la forme retenue pour les tokamak est comme son non l'indique un tore, c'est à dire l'unique géométrie qui n'admet pas d'équivalent du théorème de la boule chevelue. Le projet Joint European Torus est un exemple.[9]

[modifier] Météorologie

L'oeil d'un cyclone correspond à une singularité de même nature que celle qu'impose le théorème de la boule chevelue.
L'oeil d'un cyclone correspond à une singularité de même nature que celle qu'impose le théorème de la boule chevelue.

Le théorème de l'article possède une conséquence météorologique. Le vent, sur la surface du globe se décrit par une fonction continue. Une modélisation schématique le représente par un champ de vecteurs bi-dimensionnel. Relativement au diamètre de la terre, la composante verticale du vent est en effet négligeable.

Une première manière de satisfaire le théorème de la boule chevelue consiste à imaginer l'existence d'un point de la surface terrestre absolument sans vent. Une telle hypothèse est physiquement irréaliste.

Une modélisation physiquement plus en cohérence avec l'observation implique l'existence d'un complexe cyclonique ou anticyclonique. Le théorème de l'article impose l'existence permanente d'un point sur terre ou le vent se modélise par un système tourbillonnant avec, en son centre un oeil où la composante horizontale du vent est nulle. Cette conséquence est de fait observée dans la réalité.

Le théorème n'offre aucune indication sur la taille de l'œil ou sur la puissance des vents qui l'entourent.

[modifier] Théorème du point fixe de Brouwer

On peut démontrer le théorème du point fixe de Brouwer à partir du théorème de la boule chevelue. Il s'énonce ainsi :

Théorème du point fixe de Brouwer — Soit n un entier au moins égal à 1, et soit Bn la boule centrée à l'origine et de rayon 1 dans l'espace euclidien V à n dimensions. Soit f une application continue de Bn dans elle-même. Alors f possède un point fixe ; en d'autres termes, il existe un x dans Bn tel que f(x) = x.

[modifier] Démonstration visuelle pour le disque

La démonstration est encore une fois une démonstration par l'absurde. Supposons qu'il existe une application continue f du disque unité dans lui-même, telle que f(x) soit distinct de x quel que soit x dans le disque unité. On va fabriquer une boule chevelue sans épi ni calvitie, et obtenir ainsi une contradiction.

Si on a une application f sans point fixe, alors chaque point x du disque permet de définir un vecteur non nul, le vecteur f(x) − x.

Maintenant, on prend une balle de tennis, on coupe soigneusement la peau de la balle le long de l'équateur, et on détache chacune des demi-sphères de peau. Comme elles sont en caoutchouc, on peut les déformer et les appliquer soigneusement tour à tour sur le demi-disque.

Information Cliquez sur une vignette pour l’agrandir.

Une fois la première demi-sphère appliquée sur le disque, il est facile de dessiner en chaque point un vecteur, qui a la même direction que f(x) − x, mais qui est de norme 1, pour ne pas se compliquer la tâche. On relâche alors la demi-sphère, et par un miracle mathématique, les vecteurs dessinés deviennent des vecteurs tangents non nuls. On fait la même chose pour le deuxième demi-hémisphère : on copie le champ de vecteur, puis on le relâche, si bien qu'il reprend sa forme, et il est muni d'un champ de vecteurs tangent qui ne s'annule pas.

Information Cliquez sur une vignette pour l’agrandir.

Au bord de chacun des deux demi-hémisphères, le champ de vecteur se trouve dans un plan vertical. Si on remettait les deux hémisphères sur la balle de tennis, on n'aurait pas un champ continu. Mais cela se corrige : sur le deuxième hémisphère, on transforme le champ de vecteur de la façon suivante : en chaque point, le champ se trouve dans un plan tangent, et dans ce plan, on reflète le vecteur par rapport à la tangente au parallèle en ce point.

Information Cliquez sur une vignette pour l’agrandir.

A ce moment-là, on recolle les deux hémisphères sur la balle, et cette fois-ci leurs champs tangents se raccordent continûment, fournissant ainsi une chevelure continue et sans calvitie à la boule, ce qui donne la contradiction désirée.

[modifier] Démonstration dans le cas général pour n'importe quelle boule

La démonstration générale est une formalisation de la démonstration visuelle qui précède, dans le cas des boules de dimension paire. Le cas de dimension impaire est déduit du cas de dimension paire par abaissement dimensionnel.

[modifier] Algèbre linéaire

Il existe des applications du théorème purement mathématiques et elles ne se limitent pas à la topologie algébrique ou différentielle.

Si A est une matrice antisymétrique sur un espace euclidien V de dimension impaire, alors l'endomorphisme associé à A n'est pas injectif. En particulier, il n'existe pas de formes bilinéaires antisymétriques non dégénérées en dimension impaire.

En effet, pour tout vecteur v, on a : (Av | v) = − (v | Av) = − (Av | v) et donc a fortiori Av.v = 0. En particulier, X(v) = Av définit par restriction un champ de vecteurs continu sur la sphère unité de V, qui est une sphère de dimension paire. Ce champ admet un point d'annulation v. Ce vecteur unitaire v appartient donc au noyau de A.

[modifier] Voir aussi

[modifier] Notes et références

[modifier] Notes

  1. Luitzen Egbertus Jan Brouwer Über Abbildung von Mannigfaltigkeiten Mathematische Annalen 1912 lire
  2. Ce théorème énonce qu'un lacet simple divise le plan en deux composantes connexes. Il est finalement démontré rigoureusement en 1905 : Oswald Veblen, Theory on plane curves in non-metrical analysis situs, Transactions of the American Mathematical Society 6 (1905), pp. 83–98
  3. Leopold Kronecker Über Systeme von Funktionen mehrerer Variabeln Monatsber. Berlin Akad. 1869 pp. 159–193 et 688–698
  4. Cette description est reprise ici de Benoît Rittaud, Le journal de maths des élèves, 1 (1994), ENS de Lyon lire
  5. Cette démonstration visuelle est inspirée d'un énoncé d'examen de mathématiques à l'Université Pierre et Marie Curie. On y trouve une référence, par exemple dans la page de discussion du site Phorum 5 de géométrie par Les mathématiques.net
  6. J. Milnor, Analytic proofs of the "hairy ball theorem" and the Brouwer fixed point, Am. Math. Monthly 85(1978)521-524.
  7. D. Asimov, Average Gaussian curvature of leaves of a foliation, Bull. Amer. Maht. Soc. 84(1978)131-133
  8. C. A. Rogers, A less strange version of Milnor's proof of Brouwer fixed point theorem, Amer. Math. Monthly 87(1980)525-527
  9. L. Lemaire La recherche mathématique aujourd’hui Université Libre de Bruxelles 2000 lire p 22

[modifier] Liens externes

[modifier] Références

  • (en) J. W. Milnor, Topology from the differentiable viewpoint Princeton Univ. 1997 (ISBN 069104833957)
  • (fr) N. E. Chinn W. G. Steenrod Topologie élémentaire Dunod 1991 (ISBN 2040048480)
  • (en) M. Eisenberg, R. Guy, A Proof of the Hairy Ball Theorem The American Mathematical Monthly Vol. 86, No. 7 (Aug. — Sep., 1979), pp. 571—574