Base orthonormale

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir BON.

Une base orthonormale (BON) est une structure mathématiques.

Sommaire

[modifier] Définition

Soit En un espace vectoriel euclidien de dimension n, où n est un entier naturel non nul, et  \mathcal B = ( \vec e_1 , \vec e_2 , ... , \vec e_n), une base de En.

  • Si n = 1, alors \mathcal B = ( \vec e_1) est dite orthonormale si et seulement si
 \| \vec e_1 \| = 1
  • Si n > 1, alors \mathcal B est orthonormale si et seulement si
\| \vec e_1 \| = \| \vec e_2 \| = ... = \| \vec e_n \| = 1
et,
pour tout  i \not = j, \vec e_i \perp \vec e_j ( c'est-à-dire \vec e_i \cdot \vec e_j = 0 )

Une base orthonormale est donc une base où tous les vecteurs de la base sont de norme 1 et sont orthogonaux 2 à 2. Cette définition s'applique aussi sur un espace hermitien. Il correspond à une généralisation aux complexes d'un espace euclidien.

[modifier] Repère orthonormal (ou orthonormé)

Soient An un espace affine euclidien associé à l'espace vectoriel euclidien En et O un point quelconque de An, alors le repère

 \mathcal R = (\ O , \vec e_1 , \vec e_2 , ... , \vec e_n)

est dit orthonormal si et seulement si sa base associée  \mathcal B = ( \vec e_1 , \vec e_2 , ... , \vec e_n) est elle-même orthonormale.

[modifier] En géométrie dans l'espace

En géométrie dans l'espace, la base est en général notée (\vec{i},\vec{j},\vec{k}) au lieu de (\vec{e_1},\vec{e_2},\vec{e_3}).

La base est dite « directe » si \vec{k} est le produit vectoriel de \vec{i} et de \vec{j} (\vec{k} = \vec{i} \wedge \vec{j}).

Le terme « base orthonormale directe » est parfois abrégé par le sigle BOD.

Si la base associée à un repère est orthonormale directe, le repère est un repère orthonormal direct, terme parfois abrégé par le sigle ROND.

Voir l'article Orientation (mathématiques).


[modifier] Orthonormalisation

Icône de détail Article détaillé : Procédé de Gram-Schmidt.

On peut à partir d'un base qui n'est pas orthonormale construire une base orthonormale. La méthode la plus répandue est l'orthogonalisation de Gram-Schmidt. Cette méthode permet de construire une base orthonormale à partir de toute base de l'espace.

[modifier] Voir aussi