Équation de Dirac

Un article de Wikipédia, l'encyclopédie libre.


Cet article fait partie de la série
Mécanique quantique
\hat{H}|\psi\rangle = i\hbar\frac{d}{dt}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

Cette boîte: voir • disc. • mod.

L'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron.

Il s'agit au départ d'une tentative pour incorporer la relativité restreinte à des modèles quantiques, avec une écriture linéaire en la masse et l'impulsion.

Sommaire

[modifier] Explication

Cette équation décrit le comportement de particules élémentaires de spins demi-entiers, comme les électrons. Dirac cherchait à transformer l'équation de Schrödinger afin de la rendre invariante par l'action du groupe de Lorentz, en d'autre termes à la rendre compatible avec les principes de la relativité restreinte.

Cette équation prend en compte de manière naturelle la notion de spin introduite peu de temps avant et permit de prédire l'existence des antiparticules. En effet, outre la solution correspondant à l'électron, il découvre une nouvelle solution correspondant à une particule d'énergie négative et de charge opposée à celle de l'électron.

En 1932 Carl Anderson, alors qu'il étudiait des photons de haute énergie en provenance de l'espace, constate que l'interaction de ces photons avec la chambre à brouillard produit une particule qui s'identifie à la particule conjecturée par Dirac, le positon.

Il est par ailleurs tout à fait étonnant que l'opérateur de Dirac, découvert pour des raisons absolument physiques (et théoriques) aura en mathématiques un glorieux avenir par son usage indispensable dans l'un des plus profonds résultats du siècle, le théorème d'Atiyah et Singer démontré dans les années 1960.

[modifier] Formulation mathématique

Sa formulation exacte est :

 i \hbar \frac{\partial\psi}{\partial t} (\mathbf{x},t) = \left(mc^2\alpha_0 -i\hbar c \sum_{j = 1}^3 \alpha_j \frac{\partial}{\partial x_j}\, \right) \psi (\mathbf{x},t)


m est la masse de la particule, c la vitesse de la lumière, \hbar la constante de Planck réduite, x et t les cooordonnées dans l'espace et dans le temps, et ψ(x, t) une fonction d'onde à quatre composantes. (La fonction d'onde doit être formulée par un spineur à quatre composants, plutôt que par un simple scalaire, du fait des exigences de la relativité restreinte.) Enfin \alpha_i, \ i=0,1,2,3 sont des matrices de dimension 4\times 4 agissant sur le spineur \psi\, et appelées matrices de Dirac. En terme des matrice de Pauli \vec\sigma on peut écrire les matrices de Dirac, dans la représentation de Dirac (d'autres sont possibles, comme la représentation de Weyl ou la représentation de Majorana), sous la forme


\begin{matrix}
\alpha_0=\left(\begin{matrix}1&0\\0&-1\end{matrix}\right) &,& \vec\alpha=\left(\begin{matrix}0&\vec\sigma\\\vec\sigma&0 \end{matrix}\right)
\end{matrix}

Il est commun en mécanique quantique de considérer l'opérateur quantité de mouvement \vec p\equiv -i\hbar\vec\nabla\, et dans ce cas l'équation de Dirac se réécrit de façon condensée

 i \hbar \frac{\partial\psi}{\partial t} (\mathbf{x},t) = \left(mc^2\alpha_0 + c \vec\alpha.\vec p\, \right) \psi (\mathbf{x},t)

De plus, il est naturel de chercher une formulation covariante, ce qu'on fait en posant γ0 = γ0 = α0 et γi = − γi = α0αi, auquel cas on a (en adoptant les conventions c=1 et \hbar=1) une notation encore plus compacte :

\left(\displaystyle{\not}p-m\right)\psi(\mathbf{x},t)=0

où l'on a adopté la notation de Feynman \displaystyle{\not}a=a^\mu\gamma_\mu

[modifier] Voir aussi

[modifier] Articles connexes

[modifier] Bibliographie

[modifier] Ouvrages de référence

  • Albert Messiah, Mécanique quantique [détail des éditions]
  • James Bjorken & Sidney Drell ; Relativistic Quantum Mechanics, McGraw-Hill (1964), ISBN 0-07-005493-2.
  • Lewis H. Ryder ; Quantum Field Theory, Cambridge University Press (1985), ISBN 0-521-33859-X.
  • Claude Itzykson & Jean-Bernard Zuber ; Quantum Field Theory, McGraw Hill (1985), ISBN 0-07-Y66353-X.

[modifier] Bibliothèque virtuelle

  • Alain Comtet ; Équation de Dirac (2004), pdf.
  • J.-Y. Ollitrault ; Mécanique quantique relativiste, DEA Champs, particules, matière et Magistère interuniversitaire de physique 2e année (1998-1999), pdf.
  • Jean-Bernard Zuber ; Mécanique Quantique Relativiste, M2/CFP/Parcours de Physique Théorique (2005) :
    • chapitre 1 : pdf
    • chapitre 2 : pdf

[modifier] Liens externes