Matrice symétrique

Un article de Wikipédia, l'encyclopédie libre.

Sommaire

[modifier] Définitions

{}^tA = A\,

ce qui exige que A soit une matrice carrée.

Intuitivement, les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).

Exemple :

\begin{pmatrix}
1 & 2 & 3\\
2 & 0 & 5\\
3 & 5 & 6\end{pmatrix}
  • L'ensemble des matrices symétriques à coefficients dans un anneau K est noté Sn(K).
  • Toute matrice diagonale est symétrique, puisque tous les coefficients en dehors de la diagonale principale sont nuls.
  • Un théorème fondamental concernant de telles matrices est le théorème spectral en dimension finie, qui énonce que les matrices symétriques dont les coefficients sont des nombres réels sont diagonalisables à l'aide de matrices orthogonales.
  • Remarque : il existe des matrices symétriques non diagonalisables à coefficients complexes. Exemple :
\begin{pmatrix}
1 & i\\
i & -1\end{pmatrix}

En effet, cette matrice admet 0 comme seule valeur propre ; si elle était diagonalisable, elle serait nulle.

[modifier] Interprétations

  • En algèbre bilinéaire, une matrice représentant une forme bilinéaire est symétrique ssi cette dernière est symétrique.
  • Dans un espace euclidien, une matrice représentant un endomorphisme dans une base orthonormée est symétrique ssi l'endomorphisme est auto-adjoint.

[modifier] Matrices symétriques positives

[modifier] Définitions

  • Une matrice symétrique réelle est positive si et seulement si elle représente une forme bilinéaire positive.
  • L'ensemble des matrices symétriques positives d'ordre n est noté  S_n^+(\R)
  • Autrement dit :
 \forall S\in S_n(\R),\ S\in S_n^+(\R) \iff \forall X\in\mathcal M_{n,1}(\R),\ ^tXSX\ge 0
  • Une matrice symétrique réelle est strictement positive si et seulement si elle représente une forme bilinéaire strictement positive.
  • L'ensemble des matrices symétriques strictement positives d'ordre n est noté  S_n^{++}(\R)
  • En clair,
 \forall S\in S_n(\R),\ S\in S_n^{++}(\R) \iff \forall X\in\mathcal M_{n,1}(\R)\setminus\{0\},\ ^tXSX > 0

[modifier] Propriétés

  • Une matrice symétrique est positive si et seulement si ses valeurs propres (qui sont automatiquement réelles) sont positives.
  • Une matrice symétrique est strictement positive si et seulement si ses valeurs propres sont strictement positives.
  • Pour toute matrice réelle A, la matrice tAA est une matrice symétrique positive. De plus si A est une matrice carrée inversible, tAA est strictement positive.
  • Toute matrice symétrique positive admet une unique racine carrée symétrique positive, en clair :
 \forall S\in S_n^+(\R),\ \exist ! T\in S_n^+(\R),\ T^2=S.

Ce résultat se généralise aux racine nièmes.

[modifier] Utilisations concrètes

[modifier] Voir aussi