Série de Riemann

Un article de Wikipédia, l'encyclopédie libre.

Pour α complexe, on appelle série de Riemann la série suivante :

\sum_{n\ge 1}\frac{1}{n^\alpha}

La série harmonique en est un cas particulier, pour α = 1:

\sum_{n\ge 1}\frac{1}{n} = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\ldots

Sommaire

[modifier] Proposition

Dans les deux cas, la démonstration peut se faire par application de la méthode de comparaison série-intégrale.

[modifier] Remarques

On sait calculer explicitement la somme de la série de Riemann pour tout α entier pair (supérieur ou égal à 2). Une observation assez frappante est que ces sommes sont toutes de la forme suivante, pour p entier naturel non nul :

\sum_{n=1}^{+\infty}{1 \over n^{2\,p}}=r\,\pi^{2\,p}, où r est un rationnel.
Ainsi par exemple \sum_{n=1}^{+\infty}{1 \over n^{2}} = \frac{\pi^2}{6}, \quad \sum_{n=1}^{+\infty}{1 \over n^{4}} = \frac{\pi^4}{90}, \quad\sum_{n=1}^{+\infty}{1 \over n^{6}} = \frac{\pi^6}{945},\quad \sum_{n=1}^{+\infty}{1 \over n^{8}} = \frac{\pi^8}{9450}, \quad ...

En revanche on ne sait rien du tout concernant les autres valeurs prises selon α hormis que pour α = 3, la somme est irrationnelle (démontré par Roger Apéry en 1979).

[modifier] Fonction zêta de Riemann

La fonction zêta de Riemann ζ est définie pour tout nombre complexe s de partie réelle \Re e \ (s) > 1 par la série convergente :

 \zeta(s) \ = \ \sum_{n=1}^\infin \ \frac{1}{n^s}

Il s'agit d'une fonction méromorphe.

[modifier] Généralisations

\sum{1 \over n^\alpha\,(\ln n)^\beta}.

\sum{a_n \over n^\alpha}.
  • Les séries de Riemann multiples, de la forme

\sum_{n_1,\cdots ,n_k >0}\frac{1}{(n_1^2+n_2^2\cdots +n_k^2)^{\alpha/2}}

Il y a convergence si et seulement si \Re(\alpha) >k

[modifier] Voir aussi