Polynôme de Bernoulli

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, les polynômes de Bernoulli apparaissent dans l'étude de beaucoup de fonctions spéciales et en particulier, la fonction Zeta de Riemann.

Sommaire

[modifier] Définition

Les polynômes de Bernoulli sont l'unique suite de polynômes \left( B_n \right)_{n \in \mathbb{N}} telle que :

  • B0 = 1
  • \forall n \in \mathbb{N} , B'_{n+1} = (n+1)B_n
  • \forall n \in \mathbb{N} , \int_0 ^1 B_n (x) dx = 0

[modifier] Fonctions génératrices

La fonction génératrice pour les polynômes de Bernoulli est

\frac{t e^{xt}}{e^t-1}= \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}\,.

La fonction génératrice pour les polynômes d'Euler est

\frac{2 e^{xt}}{e^t+1}= \sum_{n=0}^\infty E_n(x) \frac{t^n}{n!}\,.

[modifier] Les nombres d'Euler et de Bernoulli

Les nombres de Bernoulli sont donnés par B_n=B_n(0)\,.

Les nombres d'Euler sont donnés par E_n=2^nE_n(1/2)\,.

[modifier] Expressions explicites pour les petits ordres

Les quelques premiers polynômes de Bernoulli sont :

B_0(x)=1\,
B_1(x)=x-1/2\,
B_2(x)=x^2-x+1/6\,
B_3(x)=x^3-\frac{3}{2}x^2+\frac{1}{2}x\,
B_4(x)=x^4-2x^3+x^2-\frac{1}{30}\,
B_5(x)=x^5-\frac{5}{2}x^4+\frac{5}{3}x^3-\frac{1}{6}x\,
B_6(x)=x^6-3x^5+\frac{5}{2}x^4-\frac{1}{2}x^2+\frac{1}{42}\,

Les quelques premiers polynômes d'Euler sont :

E_0(x)=1\,
E_1(x)=x-1/2\,
E_2(x)=x^2-x\,
E_3(x)=x^3-\frac{3}{2}x^2+\frac{1}{4}\,
E_4(x)=x^4-2x^3+x\,
E_5(x)=x^5-\frac{5}{2}x^4+\frac{5}{2}x^2-\frac{1}{2}\,
E_6(x)=x^6-3x^5+5x^3-3x\,

[modifier] Différences

Les polynômes de Bernoulli et d'Euler obéissent à beaucoup de relations du calcul symbolique utilisé par Édouard Lucas, par exemple.

B_n(x+1)-B_n(x)=nx^{n-1}\,
E_n(x+1)+E_n(x)=2x^{n}\,

[modifier] Dérivées

B_n'(x)=nB_{n-1}(x)\,
E_n'(x)=nE_{n-1}(x)\,

[modifier] Translations

B_n(x+y)=\sum_{k=0}^n {n \choose k} B_k(x) y^{n-k}\,
E_n(x+y)=\sum_{k=0}^n {n \choose k} E_k(x) y^{n-k}\,

[modifier] Symétries

B_n(1-x)=(-1)^n B_n(x)\,
E_n(1-x)=(-1)^n E_n(x)\,
(-1)^n B_n(-x) = B_n(x) + nx^{n-1}\,
(-1)^n E_n(-x) = -E_n(x) + 2x^n\,

[modifier] Autres propriétés des polynômes de Bernoulli

 \forall n \in \mathbb{N} B_n (x) =2^{n-1} \left( B_n \left( \frac{x}{2} \right) + B_n \left( \frac{x+1}{2} \right) \right)

[modifier] Valeurs particulières

 \forall n > 1, B_n (0) =B_n (1)
 \forall p \in \mathbb{N}^{*},  B_{2p+1} (0) = B_{2p+1}(1)=0
 \forall p \in \mathbb{N}^{*}, B_{2p} \left( \frac {1}{2} \right) = \left( \frac{1}{2^{2p-1}} -1 \right)B_{2p} (0) , B_{2p+1} \left( \frac {1}{2} \right)=0

[modifier] Série de Fourier

La série de Fourier des polynômes de Bernoulli est aussi une série de Dirichlet et est un cas particulier de la fonction zeta d'Hurwitz

B_n(x) = -\Gamma(n+1) \sum_{k=1}^\infty 
\frac{e^{(2\pi ikx)}+ e^{(2\pi ik(1-x))}}{(2\pi ik)^n}\,

[modifier] Références

  • M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (1972) Dover, New York. (See Chapter 23.); wiki: Abramowitz and Stegun.
  • Tom M. Apostol Introduction to Analytic Number Theory, (1976) Springer-Verlag, New York. (See Chapter 12.11)
Autres langues