Théorème de Norton

Un article de Wikipédia, l'encyclopédie libre.

Le Théorème de Norton pour les réseaux électriques établit que tout circuit résistif est équivalent à une source de courant idéale I, en parallèle avec une simple résistance R. Le théorème s'applique à toutes les impédances, pas uniquement aux résistances.

L'énoncé de ce théorème a été publié en 1926 par l'ingénieur Edward Lawry Norton (1898-1983).

Communément :

  • Le courant de Norton est le courant entre les bornes de la charge lorsque celle-ci est court-circuitée, d'où Ic = I (court-circuit)
  • La résistance de Norton est celle mesurée entre les bornes de la charge lorsque toutes les sources sont rendues inactives en court-circuitant les sources de tension et en débranchant les sources de courant. On note que  R_\mathrm{N}\ = R_\mathrm{Th}\ , avec  R_\mathrm{Th}\ la résistance de Thévenin.

[modifier] Exemple

Démonstration du théorème de Norton
Démonstration du théorème de Norton
  • En (a): Circuit originel.
  • En (b): Court-circuit entre les bornes a et b pour trouver le courant Norton I_\mathrm{N} \
On calcul d'abord le courant total délivré par la source de tension;
I_\mathrm{total} = {V_\mathrm{1} \over R_\mathrm{1} + \Bigl( \dfrac {R_\mathrm{2} \cdot R_\mathrm{3}}{R_\mathrm{2} + R_\mathrm{3}} \Bigr)} = 4.54 \mathrm{A}
On trouve ensuite le Courant de Norton par la formule du diviseur de courant;
I_\mathrm{N} = {R_\mathrm{2} \over R_\mathrm{2}\ + R_\mathrm{3}} \cdot I_\mathrm{total} = 1.82 \mathrm{A}
  • En (c): Court-circuit aux bornes de la source de tension et circuit ouvert entre a et b pour trouver la résistance de Norton R_\mathrm{N} \
R_\mathrm{N} = R_\mathrm{3} + \Bigl( \dfrac {R_\mathrm{2} \cdot R_\mathrm{1}}{R_\mathrm{2} + R_\mathrm{1}} \Bigr) = 3.67 \Omega
  • En (d): Circuit équivalent de Norton

[modifier] Voir aussi

[modifier] Lien externe