Norme (arithmétique)

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir norme.

En mathématiques la norme est une notion utilisée en théorie de Galois ou en théorie algébrique des nombres.

La théorie classique de Galois étudie des extensions finies L d'un corps K un autre corps commutatif. L'ensemble L contient K (ou, ce qui revient au même il existe un morphisme de corps injectif de K dans L), L est commutatif et L, considéré comme un espace vectoriel sur le corps K est de dimension finie. Une première définition de la norme est l'application qui à un élément l de L associe le déterminant de la fonction multiplication par l.

En arithmétique, la norme relative est une application d'un sur-corps L vers un sous-corps K d'une extension. Cette application intervient de façon cruciale dans la théorie des corps de classes : les sous-extensions abéliennes d'une extension donnée sont essentiellement en correspondance avec des groupes de normes, c'est-à-dire l'image dans le sous-corps par la norme de certains groupes du sur-corps.

Cette notion s'étend en une notion de norme d'un idéal, définie pour les idéaux premiers comme le cardinal du corps résiduel, puis par multiplicativité, pour les idéaux composés. La norme d'un idéal principal est alors égale à la norme relative sur Q, l'ensemble des nombres rationnels, d'un générateur de cet idéal. La démonstration de la finitude du groupe des classes utilise des propriétés de majoration de la norme des idéaux dans une classe donnée.

Sommaire

[modifier] Définitions

Soit K un corps commutatif, L une extension finie et l un élément de L. Une première définition est la suivante :

  • La norme relative de l'élément l dans K est le déterminant de l'endomorphisme du K espace vectoriel L qui à x associe l.x. Cette norme est généralement notée NL/K(l).

Il existe une définition plus restrictive et équivalente si les conditions d'existence sont remplies :

La norme d'un nombre algébrique peut être définie sans référence à la donnée d'une extension L, on parle alors de norme et non plus de norme relative.

  • La norme d'un nombre α algébrique dans K est égale au coefficient constant de son polynôme minimal si le polynôme est séparable. Une telle norme est parfois notée N(α).

Cette définition s'applique encore si le nombre est un entier algébrique, la norme est alors entière. Elle se généralise aux idéaux d'un anneau d'entiers algébriques :

  • La norme d'un idéal M de la fermeture algébrique OL de L est l'ordre de l'anneau quotient M/OL si le corps K est celui des nombres rationnels.

[modifier] Propriétés

[modifier] Théorie de Galois

Icône de détail Article détaillé : théorie de Galois.

Si les trois définitions semblent à priori éloignées les unes des autres, la réalité est différente :

  • Si une extension finie L est galoisienne, le déterminant de l'application multiplication par l, où l est un élément de L est égal au produit des images d'une racine du polynôme minimal par les différents automorphismes du groupe de Galois.

L'article polynôme minimal d'un nombre algébrique montre que si σ1, σ2, ..., σd désigne les différents éléments du groupe de Galois, d étant la dimension de L en tant que K espace vectoriel et χ[X] le polynôme caractéristique, l'égalité suivante est vérifiée :

\chi[X] =\prod_{i=1}^d \Big(\sigma_i(m) - X\Big)\quad \text{et}\quad \mathcal N_{\mathbb L/\mathbb K} (l) = \prod_{i=1}^d \sigma_i(m)

Le déterminant est égal au monôme constant du polynôme caractéristique, correspondant bien au produit des σi(m) pour i décrivant l'intervalle de borne 1 et d.

La définition d'une norme relative à une extension et d'une norme est un peu différente. Il suffit de considérer un élément k de K pour s'en rendre compte, sa norme relative est égal à kd et sa norme à k.

  • Soit l un élément de L et n la dimension de l'espace vectoriel L sur le corps de rupture K[l]. Si N(l) désigne la norme de l et NL/K(l) sa norme relative, alors :
\mathcal N(l)^n = \mathcal N_{\mathbb L / \mathbb K}(l)

Ce résultat provient de l'égalité suivante, démontrée dans l'article polynôme minimal d'un nombre algébrique :

\chi[X] = (-1)^n P^n[X]\;

Une propriété est vérifiée pour la norme relative :

  • Soit l1 et l2 deux éléments de L, le produit des normes relatives de l1 et l2 est égal à la norme relative du produit l1.l2.
\mathcal N_{\mathbb L / \mathbb K}(l_1)\cdot \mathcal N_{\mathbb L / \mathbb K}(l_2) = \mathcal N_{\mathbb L / \mathbb K}(l_1\cdot l_2)

Cette propriété est la conséquence directe du fait que le produit de deux déterminants est égal au déterminant des produits. L'égalité n'est en général pas vraie pour les normes. Il n'existe en effet aucune raison pour que les corps de ruptures aient même dimension.

[modifier] Théorie algébrique des nombres

Icône de détail Article détaillé : Théorie algébrique des nombres.

Ici, K est une extension finie des nombres rationnels et L une extension finie de K. On considère deux anneaux OK et OL fermeture intégrale des corps K et L. Ce sont des anneaux de Dedekind. La norme considérée est la norme relative.

  • La norme relative de L sur K d'un entier l de OL est un entier de OK.

Dire que l est entier revient à dire que son polynôme minimal est à coefficients entiers. Son polynôme caractéristique, multiple du polynôme minimal est aussi à coefficients entiers, ce qui montre le caractère intégrale de la norme.

La norme relative dispose d'une propriété remarquable si K est égal à Q le corps des rationnels :

  • La valeur absolue de la norme relative d'un entier algébrique l de L sur Q est égal à l'ordre de l'anneau quotient OL/ lOL.

Cette propriété se démontre à l'aide de considérations géométriques. L'anneau OL est noethérien, il admet une base B comme Z module. On considère le volume fondamental F de lOL égal à l'ensemble des points de K ayant des coordonnées dans [0, 1[ dans la base l.B de l'idéal. On remarque que chaque élément du quotient OL/lOL contient un unique représentant dans F. Une considération géométrique permet de montrer que le nombre d'éléments de OL dans F est égal à la valeur absolue de la norme d'un générateur de I.

Toujours si K est égal à Q la propriété de multiplicativité est conservé :

  • Soit J1 et J2 deux idéaux de OL, l'égalité suivante est vérifiée :'
\mathcal N_{\mathbb L/\mathbb Q} (J_1\cdot J_2) = \mathcal N_{\mathbb L/\mathbb Q} (J_1) \cdot \mathcal N_{\mathbb L/\mathbb Q} (J_2)

La démonstration se fonde sur le fait que l'anneau OL est de Dedekind. Tout idéal est produit d'idéaux premiers et tout idéal premier est maximal. Il suffit de démontrer que la propriété est vraie pour les idéaux maximaux et multiplier par les facteurs premiers de J2.

Enfin :

  • Soit f un morphisme de Z module injectif de OL vers un idéal J, la norme relative de J est égal à la valeur absolue du déterminant de f.

[modifier] Applications

Les normes permettent parfois d'établir le caractère euclidien de certains anneaux d'entiers. Tel est le cas pour les entiers de Gauss, d'Eisenstein et de Dirichlet.

Dans le cas plus général des corps quadratiques la norme aide à élucider la structure de l'anneau pour permettre par exemple de résoudre l'équation x2 + 5.y2 = nn est un entier.

D'une manière encore plus générale, la norme est utilisée pour établir les résultats clé de la théorie algébrique des nombres, comme la structure des idéaux fractionnaires ou celle du groupe des classes d'idéaux.

[modifier] Voir aussi

[modifier] Liens externes

[modifier] Références