Hypocycloïde

Un article de Wikipédia, l'encyclopédie libre.

Construction d'une hypocycloïde
Construction d'une hypocycloïde

Une hypocycloïde est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur et à l'intérieur de celui-ci. Il s'agit donc d'un cas particulier de cycloïde à centre, qui est une catégorie de courbe cycloïdale.

Sommaire

[modifier] Étymologie et histoire

Le mot est une extension de cycloïde, inventé en 1599 par Galilée, et a la même étymologie : il vient du grec hupo (sous), kuklos (cercle, roue) et eidos (forme, « semblable à »).

La courbe elle-même fut étudiée par Albrecht Durer en 1525, Rømer en 1674 (qui la baptisa) et Daniel Bernoulli en 1725.

[modifier] Définition mathématique

Une hypocycloïde peut être définie par l'équation paramétrique suivante :

x(\theta) = (R-r) \cos \theta + r \cos (\frac{R-r}{r} \theta) \,
y(\theta) = (R-r) \sin \theta - r \sin (\frac{R-r}{r} \theta) \,

R\, est le rayon du cercle de base et r\, celui du cercle roulant. Avec q={R \over r}, cette équation peut donc également s'écrire :

x(\theta) = r 	\left[(q-1) \cos \theta + \cos (q-1) \theta 	\right] \,
y(\theta) = r 	\left[(q-1) \sin \theta - \sin (q-1) \theta \right]\,

[modifier] Propriétés

La courbe est formée d'arcs isométriques (appelés arches) séparés par des points de rebroussements. Si q est rationnel (et peut donc s'écrire q=a/b où a et b sont des entiers), a représente le nombre d'arches de la courbe. On peut aussi voir ces deux grandeurs de la manière suivante :

  • a représente le nombre de rotations du cercle roulant nécessaires pour ramener le point mobile à sa position de départ,
  • b représente le nombre de tours du cercle de base nécessaires au cercle roulant pour revenir au point de départ.

Les points de rebroussements sont obtenus pour  \theta = \frac{2k \pi }{q}. La longueur d'une arche est de 8 \frac{q-1}{q^2}R.
Si q est entier, la longueur totale de la courbe vaut {4 \over \pi}(1+{1 \over q}) fois la longueur du cercle de base, et l'aire totale vaut (1-{1 \over q})(1-{2 \over q}) fois celle du cercle de base.

Le théorème de la double génération prouve qu'une hypocycloïde est aussi une péricycloïde, c'est-à-dire la courbe décrite par un point d'un cercle de rayon r+R roulant sans glisser sur ce cercle directeur en le contenant.

Les petites oscillations du pendule de Foucault forment également une hypocycloïde.

[modifier] Voir aussi

  • Lorsque le point mobile n'est pas fixé sur le cercle roulant mais à l'extérieur ou à l'intérieur de celui-ci on parle alors d'hypotrochoïde, qui est un cas particulier de trochoïde. D'ailleurs, si vous avez cru reconnaître les dessins réalisés avec un spirographe dans les illustrations ci-dessus, vous ne vous êtes pas beaucoup trompé : cet appareil réalise des hypotrochoïdes et non des hypocycloïdes.
  • Lorsque le cercle mobile tourne à l'extérieur du cercle directeur, la courbe ainsi dessinée s'appelle alors épicycloïde.
  • Si R = 2r, l'hypocycloïde est un diamètre du cercle de base (voir le théorème de La Hire).
  • Si R = 3r, l'hypocycloïde est une deltoïde. On obtient une figure identique si R = 3/2 x r. Dans ce cas, il s'agit également de l'enveloppe du diamètre du cercle roulant.
  • Si R = 4r, l'hypocycloïde est une astroïde. On obtient une figure identique si R = 4/3 x r. Dans ce cas, il s'agit également de l'enveloppe du segment de longueur constante R dont les extrémités décrivent les axes d'un repère orthonormé.

[modifier] Liens externes


Exemples de courbes
Coniques (dont cercle, ellipse, parabole, hyperbole)
CardioïdeCissoïdeClothoïdeCycloïdeÉpicycloïdeHypocycloïde (astroïde, deltoïde) • Folium de Descartes

HypotrochoïdeSpirale (dont logarithmique, d'Archimède) • Hélice

Lemniscates (dont lemniscate de Gerono, lemniscate de Booth, lemniscate logarithmique, courbe du diable)
TrajectoireOvale de CassiniChaînetteCourbe brachistochrone
Accéder au portail de la géométrie