Opérateur de position de Newton-Wigner

Un article de Wikipédia, l'encyclopédie libre.

En théorie quantique relativiste, l'opérateur de position de Newton-Wigner est un opérateur introduit en 1949 par Newton et Wigner pour tenter de décrire la position de particules massives relativistes de spin arbitraire.

Sommaire

[modifier] Le problème de la localisation

Dans quelle mesure est-il possible de parler de la localisation d'une « particule » quantique dans une région de l'espace (et dans le temps) ?

  • Dans le cadre de la mécanique quantique non-relativiste, on dispose d'un opérateur position  \ \hat{\mathrm{r}} \ hermitien qui permet de préciser de façon cohérente la notion de localisation d'une particule[1].

[modifier] L'opérateur position de Newton-Wigner (1949)

En 1949, Newton et Wigner ont réussi à construire un nouvel « opérateur position » pour les particules massives relativistes de spin arbitraire. Moyennant quelques hypothèses générales raisonnables, ils ont créé un opérateur non-local dans l'espace physique. Les « états localisés » associés à cet opérateur ne sont pas des distributions de Dirac. L'état localisé autour de l'origine possède à grande distance une décroissance exponentielle avec une échelle caractéristique égale à la longueur d'onde de Compton de la particule massive. De plus, ces états localisés ne sont pas invariants par transformation de Lorentz.

La construction de Newton-Wigner s'étend aux particules de masse nulle de spin 0 (décrites par l'équation de Klein-Gordon) et de spin 1/2 (décrites par l'équation de Dirac), mais pas au photon, de spin 1.

[modifier] Bibliographie

  • T. D. Newton and E. P. Wigner ; Localized States for Elementary Systems, Review of Modern Physics 21 (1949), 400-406. pdf.

[modifier] Notes

  1. Lorsque la particule est dans un état | \,  \psi \, \rangle, on peut par exemple calculer :
    • la position moyenne, donnée par : \langle \,  \psi \, | \ \hat{\mathrm{r}} \ | \,  \psi \, \rangle  ;
    • l'écart quadratique moyen Δr autour de cette position moyenne (dispersion), défini par :

     
\Delta \mathrm{r}^2 \ = \ \langle \,  \psi \, | \ \hat{\mathrm{r}}^2 \ | \,  \psi \, \rangle \ - \ \langle \,  \psi \, | \ \hat{\mathrm{r}} \ | \,  \psi \, \rangle^2

    La particule quantique est d'autant mieux localisée que cette dispersion est petite. La mécanique quantique n'interdit d'ailleurs pas de la prendre nulle, auquel cas la localisation spatiale est parfaitement réalisée. (Il y a alors une dispersion maximale en quantité de mouvement pour satisfaire les inégalités de Heisenberg.)
  2. Un auteur a récemment remis en cause la validité du raisonnement de Pauli ; cf. e.g. : quant-ph/9908033 ; quant-ph/0111061 ; quant-ph/0303106.
  3. En mécanique hamiltonienne, temps et énergie sont conjugués : le hamiltonien est le "générateur infinitésimal" des translations dans le temps. Par analogie avec le couple position/impulsion satisfaisant [\hat{\mathrm{x}}^i, \, \hat{\mathrm{p}}_j ] = i \ \hbar \ \hat{\mathrm{\delta}}_j^i, on serait alors amené à écrire : [\hat{\mathrm{H}},\hat{\mathrm{t}}] = (\pm) \ i \ \hbar \ \hat{\mathrm{1}}. De ce fait, l'opérateur temps deviendrait réciproquement le générateur infinitésimal des translations en énergie, et le spectre d'énergie serait le continuum \mathbb R entier, ce qui signifie que l'énergie ne serait plus bornée inférieurement. Or la mécanique quantique a précisément été inventée pour rendre compte de la stabilité des atomes, et notamment de l'existence d'un état fondamental d'énergie finie.

[modifier] Articles liés