Intensité de champ magnétique

Un article de Wikipédia, l'encyclopédie libre.

L'unité de l'intensité d'un champ magnétique dans le système international est le tesla (T). On utilise parfois le gauss (G), sachant que :

1 \ \mathrm{G} \ = \ 10^{-4} \ \mathrm{T}

Sommaire

[modifier] Ordre de grandeurs d'intensité de champs magnétiques

  • Source = cerveau humain ; champ mesuré à la surface du crâne :
B \ \simeq \  10^{-15} \ \mathrm{T}


  • Champ typique dans le vide interstellaire, mesuré par une sonde spatiale :
B \ \simeq \  10^{-6} \ \mathrm{T}


  • Source = Terre ; champ mesuré à la surface :
B \ \simeq \  10^{-4} \ \mathrm{T}  \ = \ 1 \ \mathrm{G}


  • Source = fil rectiligne infini parcouru par un courant de I = 10 A ; champ mesuré à une distance r = 2 cm du fil :
B \ = \ \frac{\mu_0 I}{2 \pi r} \ = \ 10^{-4} \ \mathrm{T}


  • Source = aimant permanent ; champ mesuré à quelques cm :
B \ \simeq \  0.1  \ \mathrm{a}  \ 1 \ \mathrm{T}


B \ \simeq \  10  \ \mathrm{a}  \ 100 \ \mathrm{T}


  • Source = magnétar, un type d'étoile à neutrons :
B \ \simeq \  10^{+11} \ \mathrm{T}

[modifier] Champs magnétiques intenses

[modifier] Fabrication

La fabrication de champ magnétiques intenses (supérieurs à 1 T) nécessite l'emploi d'un électro-aimant constitué d'un bobinage de fil conducteur appelé solénoïde parcouru par un courant électrique.

[modifier] Problèmes rencontrés

Le dispositif de l'électro-aimant est sujet à deux limitations :

  • L'effet Joule, qui tend à faire fondre les fils du bobinage lorsque l'énergie à dissiper sous forme de chaleur devient trop grande pour le matériau.
  • La « pression magnétique », action mécanique sur le bobinage résultante des forces de Lorentz sur les fils. Cette pression magnétique radiale est dirigée vers l'extérieur de la bobine et tend à faire éclater celle-ci.

[modifier] Solutions techniques

  • Pour contrer l'effet Joule, deux possibilités sont utilisées :
    • l'utilisation d'un matériau supraconducteur sous sa température critique. Cette possibilité est limitée, car il existe un champ magnétique critique au dessus duquel la supraconductivité du matériau disparait.
    • le refroidissement liquide du bobinage pour évacuer l'excédent d'énergie Joule. Un débit typique de 300 litres d'eau par seconde permet d'atteindre une trentaine de teslas...
  • Pour contrer la pression magnétique, il faut utiliser un conducteur plus solide que le cuivre et construire des renforts mécaniques extérieurs au bobinage.

[modifier] Ordre de grandeurs

[modifier] Champs statiques

  • Source = électro-aimant de Faraday (1840) :
B \ \simeq \  1 \ \mathrm{T}


  • Source = électro-aimant de 50 tonnes installé au laboratoire Bellevue (début du XXe siècle), consommant une puissance de 100 kW  :
B \ \simeq \  7 \ \mathrm{T}


  • Source = électro-aimant à bobinage supraconducteur (début du XXIe siècle) :
B \ \simeq \  20 \ \mathrm{T}


  • Source = électro-aimant à refroidissement liquide (début du XXIe siècle) :
B \ \simeq \  33 \ \mathrm{T}


  • Source = électro-aimant hybride (supraconducteur + refroidissement liquide - début du XXIe siècle) consommant une puissance de 20 MW :
B \ \simeq \  45 \ \mathrm{T}


Il n'est guère possible de faire mieux actuellement. Pour aller plus haut, on utilise un courant transitoire, qui ne circule que pendant une brève durée, de façon à laisser le bobinage refroidir ensuite. On fabrique ainsi des champs dit pulsés.

[modifier] Champs pulsés sans destruction de la source

  • Source = électro-aimant monolithique renforcé (début du XXIe siècle) :
B \ \simeq \  60 \ \mathrm{T} \ \mathrm{pendant} \ 100 \ \mathrm{ms}


  • Source = bobines gigognes (début du XXIe siècle) :
B \ \simeq \  77 \ \mathrm{T} \ \mathrm{pendant} \ 100 \ \mathrm{ms}

[modifier] Champs pulsés avec destruction de la source

  • Source = bobine monospire (début du XXIe siècle) :
B \ \simeq \  300 \ \mathrm{T}


B \ \simeq \  600 \ \mathrm{T}


B \ \simeq \  2000 \ \mathrm{T}

[modifier] Articles liés

[modifier] Liens externes


[modifier] Bibliographie

  • Geert Rikken ; La physique en champs magnétique intense, conférence donnée à l'Université de Tous Les Savoirs (18 juillet 2005). Vidéo disponible au format Real Video.
Électromagnétisme | Électricité | Électronique | Électrotechnique | Électrochimie | Automatique | Traitement du signal
Électricité : Glossaire de l'électricité

Électrostatique : Champ électrique · Charge électrique · Gauss · Loi de Coulomb · Potentiel électrique

Magnétostatique : Ampère · Champ magnétique · Moment magnétique · Loi de Biot et Savart

Électrocinétique : Champ électromagnétique · Courant de déplacement · Courant électrique · Équations de Maxwell · Force électromotrice · Force de Lorentz · Induction électromagnétique · Loi de Lenz-Faraday · Rayonnement électromagnétique

Magnétisme : Diamagnétisme · Paramagnétisme · Superparamagnétisme · Ferromagnétisme · Antiferromagnétisme · Ferrimagnétisme · Loi de Curie · Domaine de Weiss · Susceptibilité magnétique