Demi-plan de Poincaré

Un article de Wikipédia, l'encyclopédie libre.

Le demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nicolaï Lobatchevski.

Sommaire

[modifier] Le demi-plan de Poincaré (1882)

Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisement de géométrie hyperbolique.

[modifier] Géométrie

On considère le demi-plan supérieur :

\mathcal{H}_2 \ = \ \left\{ \ z = x + i y \ / \ y \ > \ 0 \ \right\}

[modifier] Métrique

On munit le demi-plan supérieur de la métrique :

ds^2 \ = \ \frac{a^2 \, \left( \, dx^2 \, + \, dy^2 \, \right)}{y^2}

Cette métrique possède une courbure scalaire constante négative :

R \ = \ - \ \frac{1}{a^2}

On se ramène usuellement au cas d'une courbure unité, c’est-à-dire qu'on choisi : a = 1 pour simplifier les équations.

[modifier] Géodésiques

Les géodésiques sont les demi-droites (au sens euclidien) verticales : x = cte (en rouge) et les demi-cercles (au sens euclidien) perpendiculaires à l'axe des abscisses  : y = 0 (en bleu) :

Image:geodes.GIF

On pourra consulter le site du mathématicien Andrew G. Bennett (université du Kansas) qui contient 3 applets java sur les géodésiques, les cercles hyperboliques et les triangles hyperboliques.

[modifier] Homographies

Les matrices de GL_2^+(\mathbb R) agissent sur cet espace, par homographies [1]. Plus précisément, soit g un élément de GL_2^+(\mathbb R) :

g \ = \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad , \quad \mathrm{det} \, g \ = \ ad - bc > 0

Son action sur un point z du demi-plan est donnée par :

g(z) \ = \ \frac{az+b}{cz+d}

[modifier] Groupes Fuchiens

[modifier] Formes automorphes

[modifier] Dynamique chaotique

Le flot géodésique sur une variété riemannienne à courbure négative est le prototype de système dynamique à temps continu le plus chaotique qui soit, une propriété remarquée dès 1898 par Hadamard[2]. On sait aujourd'hui que ce flot est, par ordre croissant d'irrégularités[3],[4] :

  • ergodique
  • mélangeant (« mixing »)
  • K-système (Anosov)
  • C-système = bernouillien[5].

Lire aussi : Chaos on the pseudosphere[6], Hyperbolic geometry in two dimensions and trace formulas[7], Quantum and classical properties of some billiards on the hyperbolic plane[8].

[modifier] Liens

[modifier] Bibliographie

[modifier] Ouvrages de mathématiques

[modifier] Géométrie

[modifier] Chaos

  • Jacques Hadamard ; Les surfaces à courbures opposées et leurs lignes géodésiques, Journal de Mathématiques Pures & Appliquées 4 (1898) 27.
  • Pierre Pansu ; Le flot géodésique des variétés Riemanniennes à courbure négative, Séminaire Bourbaki 738 (1991) publié dans : Astérisque 201-203 (1991) 269-298.
  • Donald S. Ornstein & Benjamin Weiss ; Geodesic flows are Bernouillians, Isreal Journal of Mathematics 14 (1973) 184.
  • Vladimir Arnold & André Avez ; Ergodic problems of classical mechanics, Advanced Book Classics, Addison-Wesley (1988).

[modifier] Références pour physiciens théoriciens

  • Nandor Balasz & André Voros ; Chaos on the pseudosphere, Physics Report 143 (1986) 109.
  • Yves Colin de Verdière ; Hyperbolic geometry in two dimensions and trace formulas, dans : Marie-Joya Giannoni, André Voros & Jean Zinn-Justin (éditeurs) ; Chaos & Quantum Physics, Proceeedings de l'École d'Eté de Physique Théorique des Houches (1989) Session LII, North-Holland (1991), ISBN 0-444-89277-X.
  • Charles Schmit ; Quantum and classical properties of some billiards on the hyperbolic plane, dans : Marie-Joya Giannoni, André Voros & Jean Zinn-Justin (éditeurs) ; Chaos & Quantum Physics, Proceeedings de l'École d'Eté de Physique Théorique des Houches (1989) Session LII, North-Holland (1991), ISBN 0-444-89277-X.

[modifier] Notes

  1. Le groupe GL_2^+(\mathbb R) est le sous-groupe de GL_2(\mathbb R) formé par les matrices de déterminant positif.
  2. Jacques Hadamard ; Les surfaces à courbures opposées et leurs lignes géodésiques, Journal de Mathématiques Pures & Appliquées 4 (1898) 27.
  3. Vladimir Arnold & André Avez ; Ergodic problems of classical mechanics, Advanced Book Classics, Addison-Wesley (1988).
  4. Pierre Pansu ; Le flot géodésique des variétés Riemanniennes à courbure négative, Séminaire Bourbaki 738 (1991) publié dans : Astérisque 201-203 (1991) 269-298.
  5. Donald S. Ornstein & Benjamin Weiss ; Geodesic flows are Bernouillians, Isreal Journal of Mathematics 14 (1973) 184.
  6. Nandor Balasz & André Voros ; Chaos on the pseudosphere, Physics Report 143 (1986) 109.
  7. Yves Colin de Verdière ; Hyperbolic geometry in two dimensions and trace formulas, dans : Marie-Joya Giannoni, André Voros & Jean Zinn-Justin (éditeurs) ; Chaos & Quantum Physics, Proceeedings de l'École d'Eté de Physique Théorique des Houches (1989) Session LII, North-Holland (1991), ISBN 0-444-89277-X.
  8. Charles Schmit ; Quantum and classical properties of some billiards on the hyperbolic plane, dans : Marie-Joya Giannoni, André Voros & Jean Zinn-Justin (éditeurs) ; Chaos & Quantum Physics, Proceeedings de l'École d'Eté de Physique Théorique des Houches (1989) Session LII, North-Holland (1991), ISBN 0-444-89277-X.
Autres langues