Action par conjugaison

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Conjugaison (homonymie).

En mathématiques, dans la théorie des groupes, une action par conjugaison est un cas particulier d' action de groupe. L'ensemble X sur lequel agit le groupe G est ici le groupe G lui-même.

Dans cet article :

(G, * ) désigne un groupe, noté multiplicativement, de neutre e.

La loi * du groupe est le plus souvent sous-entendue.

Sommaire

[modifier] Définitions

  • Soit g un élément de G, l'application de G dans G, qui à s associe gsg-1 est appelée automorphisme intérieur associé à g.

Cette application est bien bijective car elle est composée de deux bijections, une translation à droite et une translation à gauche, on vérifie le fait qu'elle est bien un morphisme :

\forall x,y \in G \quad aut_g(x).aut_g(y)=gxg^{-1}\; gyg^{-1}=gxyg^{-1}=aut_g(xy)\;

On définit une nouvelle loi interne par :

{loi }\, \cdot \left\{ \begin{matrix} G \times G \rightarrow G \\ (g,x) \mapsto g \cdot x=aut_g(x)=gxg^{-1} \end{matrix}\right.

  • Cette loi interne de G constitue une action de groupe, appelée action de conjugaison.

Démonstration : on vérifie les deux conditions d'une action de groupe.

\forall x \in G,\ e \cdot x = e x e^{-1}=x car e est le neutre de G

\forall (g,g') \in G\times G,\ \forall x \in E  :

 g' \cdot (g \cdot x)= g' \cdot (g x g^{-1}) = g' g x g^{-1} g'^{-1} =(g' g) x (g' g)^{-1} = (g' g) \cdot x

  • Pour tout g appartenant à G, la classe de g par l'action par conjugaison est appelée classe de conjugaison de g et est notée Cj(g). Tout élément de Cj(g) est appelé conjugué de g.

[modifier] Applications

[modifier] Propriétés

  • Les classes de conjugaison constituent une partition de G associée à la relation d'équivalence: x \sim y \ \Leftrightarrow \ \exists g \in G \quad y=g*x*g^{-1} .
  • Un élément g de G laisse invariant tout élément de G si et seulement si g appartient au centre Z(G) de G :

[\forall x\in Z \quad g*x*g^{-1}=x] \qquad \Leftrightarrow \qquad [\forall x\in Z \quad g*x=x*g].

On peut donc restreindre l'action par conjugaison au groupe quotient G/Z(G). Alors fg = fg' ssi g = g' mod[Z(G)], où fg est l'automorphisme intérieur défini par \forall x \in G,\ f_g(x) = g*x*g^{-1}.

  • De même z opère identiquement sur x (l'action par conjugaison de z stabilise x) si et seulement si z est élément du centralisateur Zx de x. La formule des classes montre alors que, si Cx désigne la classe de congugaison de x :
\forall x \in G \quad Card (C_x)=\frac{Card (G)}{Card (Z_x)}.

Remarque: La formule précédente montre en particulier que le cardinal de toute classe de conjugaison divise le cardinal de G.

[modifier] Voir aussi