Heptagone

Un article de Wikipédia, l'encyclopédie libre.

Un heptagone est un polygone à sept sommets et sept côtés.

Un heptagone régulier est un heptagone dans lequel tous les côtés sont égaux et tous les angles sont égaux. Les angles sont alors tous égaux à \frac{5\pi}{7}. L'heptagone régulier s'inscrit dans un cercle et les angles au centre associés à chacun de ses côtés sont tous égaux à \frac{2\pi}{7}.

L'aire A d'un heptagone régulier est déterminée par la formule suivante où c représente la longueur d'un côté. A = \frac{7}{4}c^2 \cot \frac{\pi}{7} \simeq 3.63391 c^2.

L'heptagone régulier est le plus petit des polygônes réguliers non constructible à la règle et au compas car 7 est un nombre premier qui n'est pas de Fermat (théorème de Gauss-Wantzel) .

Il est cependant possible de réaliser une construction à la règle et au compas si on s'aide d'autres outils géométriques ou si la règle peut être graduée. Il est aussi possible d'en tracer une version approchée, aux erreurs faibles, avec le compas et la règle.

Sommaire

[modifier] Non constructiblité

L'heptagone régulier n'est pas constructible car 7 n'est pas un nombre de Fermat. On peut aussi démontrer cette propriété de non-constructiblité sans faire appel au nombre de Fermat , en faisant seulement appel au théorème de Wantzel

Si l'heptagone était constructible alors \cos(\frac{\pi}{7}) serait un nombre constructible. Notons x=\cos(\frac{\pi}{7}). Les angles \frac{3\pi}{7} et \frac{4\pi}{7} étant supplémentaires, on a l'égalité

\cos(\frac{4\pi}{7})=-\cos(\frac{3\pi}{7}) \quad[1]

Les développements

cos(4a) = 8cos4(a) − 8cos2(a) + 1
cos(3a) = 4cos3(a) − 3cos(a)

transforment [1] en

8x4 − 8x2 + 1 = − 4x3 + 3x

Le passage de tout dans un membre et une factorisation par x + 1 conduit à

(x + 1)(8x3 − 4x2 − 4x + 1) = 0

Le réel x est donc racine de 8x3 − 4x2 − 4x + 1 irréductible sur \mathbb Q et de degré 3. Donc \cos(\frac{\pi}{7}) n'est pas constructible, par conséquent l'heptagone n'est pas constructible.

[modifier] Construction par neusis

Une construction par neusis ou par inclinaison est un procédé de construction utilisant une règle graduée et consistant à construire un segment de longueur donnée dont les extrémités se trouvent sur deux courbes données. Il s'agit ici de construire un angle de \frac{\pi}{7}.

[modifier] Une construction préliminaire

Dans la figure jointe, ABCDEFGA est un polygone où tous les segments sont de longueur 1. ABFD sont alignés et AGCE aussi.

L'angle DAE vaut \frac{\pi}{7}

Si on note cet angle a, alors le triangle ABC étant isocèle, l'angle CBD vaut 2a.
Le triangle BCD étant isocèle, la somme des angles DCE et BCA vaut 4a, comme BCA vaut a, l'angle DCE vaut 3a
Le triangle CDE étant isocèle, l'angle AED vaut 3a
Le triangle ADE étant isocèle, la somme des angles vaut 7a donc a=\frac{\pi}{7}

La longueur BE vaut \sqrt 2

On note s et t les longueurs BF et FD.
Le triangle FDE étant isocèle, 2cos(EDF) = t
Les droites (FC) et (DE) étant parallèles, l'angle ACF vaut 3a. Comme l'angle ACB vaut a, l'angle BCF vaut 3a-a = 2a. Le triangle BFC est donc isocèle et FC = FB = s
Le même parallélisme permet de dire, d'après le théorème de Thales, que
\frac{1+s}{1+s+t}=\frac{s}{1}
qui par produit en croix et simplification donne s2 + st = 1
Le théorème d'Al-Kashi dans le triangle BDE donne alors
BE2 = BD2 + DE2 − 2.BD.DE.cos(EDF) = 1 + (s + t)2t(s + t) = 1 + s2 + st = 2

[modifier] La construction par neusis

Il s'agit de construire un point A sur la médiatrice d'un segment [DE] et un point B sur le segment [AD] tels que AB = 1 et BE = \sqrt 2. On aura alors reconstitué le triangle précédent.

On construit un carré CDEF de côté 1, on trace la médiatrice (d) de [DE] et le cercle de centre E et de rayon EC
On place l'origine de la règle sur la médiatrice, la règle s'appuie sur le point D, on fait glisser l'origine de la règle sur la médiatrice jusqu'à ce que le cercle (C) traverse la règle à la graduation 1. On obtient alors les point B et A
On construit le cercle circonscrit aux points ADE qui se trouve être aussi le cercle circonscrit de l'heptagone de base DE qu'il suffit de construire.

[modifier] Une construction approchée

La recherche approchée de la solution de l'équation 8x3 − 4x2 − 4x + 1 = 0 comprise entre \frac{1}{2} et 1 par la méthode de Newton donne pour valeur de x une valeur voisine de 0,901. En prenant comme valeur approchée de sin(π / 7), le réel \frac{\sqrt{3}}{4} , on obtient pour une valeur approchée de \cos(\frac{\pi}{7}), la valeur \frac{\sqrt{13}}{4} très voisine de 0,901. Or la longueur \frac{\sqrt{3}}{4} est très facile à obtenir à l'aide d'un triangle équilatéral.


D'où la construction suivante :

Tracer un cercle de rayon 1 et de centre M.
Prendre un point X sur le cercle. Le cercle de centre X et de rayon XM rencontre le cercle précédent en A et Y
Les droites (AY) et (MX) se coupent en H.
La longueur AH est une bonne approximation du côté de l'heptagone inscrit dans ce même cercle.

[modifier] Heptagone régulier dans la vie courante

La pièce de 20 centimes d'euros est découpée sous forme d'un heptagone régulier.

[modifier] Voir aussi

=== Notes ===..


[modifier] Liens internes

[modifier] Lien externe


Polygones
Triangle · Quadrilatère · Pentagone · Hexagone · Heptagone · Octogone · Ennéagone · Décagone · Hendécagone · Dodécagone · Tridécagone  Tétradécagone  Pentadécagone  Hexadécagone  Heptadécagone  Octadécagone  Ennéadécagone  Icosagone  Triacontagone  Tétracontagone  Pentacontagone  Hectogone  Chiliagone  Myriagone