Formule sommatoire d'Abel

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la formule sommatoire d'Abel est une formule utilisée intensivement en théorie analytique des nombres. Comme son nom l'indique, elle a été indiquée par Abel et sert à calculer des séries numériques.

Sommaire

[modifier] Énoncé

Soient (an) une suite de nombres réels ou complexes et \varphi une fonction réelle de classe \mathcal{C}^1.

On pose

A(x) = \sum_{n \le x}{a_n}

Alors

\sum_{n \le x}{a_n\varphi(n)}=A(x)\varphi(x) - \int_1^x{A(u)\varphi'(u)\mathrm{d}u}

En fait, il s'agit d'une intégration par parties dans une intégrale de Stieltjes.

[modifier] Exemples

[modifier] Constante d'Euler-Mascheroni

 \sum_1^x{\frac{1}{n}}=\frac{[x]}{x}+\int_1^x{\frac{[u]}{u^2}\mathrm{d}u}

dont on déduit une représentation intégrale de la constante d'Euler-Mascheroni.

[modifier] Représentation de la fonction zeta de Riemann

 \sum_1^\infty{\frac{1}{n^s}}=s\int_1^\infty{\frac{[u]}{u^{1+s}}\mathrm{d}u}

Cette formule est valable pour \Re(s)>1. On en déduit notamment le théorème de Dirichlet selon lequel la fonction ζ(s) admet un pôle simple de résidu 1 en s=1.

[modifier] Représentation de l'inverse de la fonction zeta de Riemann

 \sum_1^\infty{\frac{\mu(n)}{n^s}}=s\int_1^\infty{\frac{M(u)}{u^{1+s}}\mathrm{d}u}

Cette formule est valable pour \Re(s)>1. Le symbole μ désigne la fonction de Möbius et on a

M(u) = \sum_{n \le u}{\mu(n)}