Théorème des gendarmes

Un article de Wikipédia, l'encyclopédie libre.

Deux fonctions f et h qui admettent la même limite L au point a et une fonction g prise en « étau » entre f et h dans le voisinage de a. Le théorème sandwich stipule donc que g admet L comme limite en a.
Deux fonctions f et h qui admettent la même limite L au point a et une fonction g prise en « étau » entre f et h dans le voisinage de a. Le théorème sandwich stipule donc que g admet L comme limite en a.

En analyse, le théorème des gendarmes (également appelé théorème d'encadrement, théorème du pincement, théorème de l'étau ou théorème du sandwich) est un théorème concernant la limite d'une fonction. Ce théorème stipule que si deux fonctions (f et h) admettent la même limite en un point (a) et qu'une troisième fonction (g) est prise en « étau » (ou « encadrée » ou « prise en sandwich ») entre f et h dans le voisinage de a, alors g admet la même limite en a.

Le théorème des gendarmes est une technique très importante en calcul infinitésimal et en analyse. Il est généralement utilisé afin de déterminer la limite d'une fonction via la comparaison avec deux autres fonctions dont la limite est connue ou facilement calculable.

Sommaire

[modifier] Énoncé

Soit I un intervalle contenant le point a. Soit f, g et h trois fonctions réelles définies sur l'intervalle I, sauf possiblement au point a.

  • si pour tout x de I qui n'est pas égal à a on a f(x)\le g(x) \le h(x)
  • et si \lim_{x \to a}f(x) = \lim_{x \to a}h(x) = L,
  • alors \lim_{x \to a}g(x) = L

[modifier] Remarques

  • a peut être situé à l'intérieur de l'intervalle I ou à une de ses bornes (extrémités). En effet, dans ce dernier cas, on considérera la limite à gauche ou la limite à droite.
  • a peut être fini ou infini. En effet, basé sur la remarque précédente, si, par exemple, I = [0, \infty [, nous pouvons utiliser la limite x \to \infty.

[modifier] Origine du nom

Pour comprendre le nom familier du théorème, il faut assimiler les fonctions f et h à des gendarmes et g à un délinquant. Ce dernier, encadré par les deux gendarmes, est obligé de les suivre jusqu'à la gendarmerie L. Son nom en italien est le « théorème des carabiniers ».

[modifier] Démonstration

La démonstration met directement en œuvre la notion de voisinage de a et la définition de la limite.

Pour tout intervalle ouvert U contenant L,

  • Puisque \lim_{x \to a}f(x) = L, il existe un voisinage V1 de a tel que
pour tout x de V1, f(x) \in U
  • Puisque \lim_{x \to a}h(x) = L, il existe un voisinage V2 de a tel que
pour tout x de V2, h(x) \in U
  • Enfin, d'après la propriété d'encadrement, il existe un voisinage V3 de a tel que
pour tout x de V3, f(x) \le g(x) \le h(x)

L'intersection de trois voisinages est un voisinage donc V = V_1 \cap V_2 \cap V_3 est un voisinage de a et pour tout x de V, on a

  • f(x) \in U
  • h(x) \in U
  • f(x) \le g(x) \le h(x)

d'où il vient que pour tout voisinage U contenant L, il existe un voisinage V tel que x\in V implique g(x) \in U,

ce qui prouve que \lim_{x \to a}g(x) = L

[modifier] Exemple

Plaçons-nous dans l'intervalle contenant les x strictement positifs (x > 0) et justifions que la limite suivante est 0 en utilisant le théorème des gendarmes:

\lim_{x \to \infty} {\sin(x)\over x} = 0

On sait que sin(x) associe pour toute valeur réelle de x un nombre plus grand ou égal à -1 et plus petit ou égal à 1. Nous avons donc:

-1 \le \sin(x) \le 1

Puisque nous sommes dans l'intervalle des x strictement positifs (x > 0), nous pouvons diviser chaque quantité de l'inéquation par x sans changer le sens des inégalités (le sens des inégalités aurait changé si nous avions été dans l'intervalle des x strictement négatifs):

-{1\over x} \le {\sin(x)\over x} \le {1\over x}

Nous savons également la valeur de ces limites:

\lim_{x \to \infty} -{1\over x} = 0 et \lim_{x \to \infty} {1\over x} = 0

Puisque nous avons trouvé deux fonctions qui « encadrent » notre fonction et qui admettent la même limite en l'infini, le théorème des gendarmes nous permet d'affirmer que:

\lim_{x \to \infty} {\sin(x)\over x} = \lim_{x \to \infty} -{1\over x} = \lim_{x \to \infty} {1\over x} = 0

[modifier] Variantes

Des variantes de ce théorème existent pour des fonctions dont la limite est infinie, mais c'est un théorème de comparaison qui n'est pas celui des gendarmes (à noter "par théorème de comparaison" donc)

Si f, g sont deux fonctions réelles définies sur un même intervalle I, telles que pour tout x de I dans un voisinage de a :
f(x)\le g(x) et \lim_{x \to a}f(x) = +\infty (a fini ou non), alors on a aussi : \lim_{x \to a}g(x) = + \infty
Si f, g sont deux fonctions réelles définies sur un même intervalle I, telles que pour tout x de I dans un voisinage de a :
f(x)\le g(x) et \lim_{x \to a}g(x) = -\infty (a fini ou non), alors on a aussi : \lim_{x \to a}f(x) = - \infty
Si f, g sont deux fonctions réelles définies sur un même intervalle I, telles que pour tout x de I dans un voisinage de a :
0 \le f(x)\le g(x) et \lim_{x \to a}g(x) = 0 (a fini ou non), alors on a aussi : \lim_{x \to a}f(x) = 0


Enfin des théorèmes analogues existent pour des limites de suites

Si u, v et w sont trois suites réelles, telles que pour tout n > N
u_n\le v_n \le w_n et \lim_{n \to +\infty}u_n = \lim_{n \to +\infty}w_n = L, alors on a aussi : \lim_{n \to +\infty}v_n = L
avec les variantes pour les limites infinies.

Les démonstrations de toutes ces variantes sont analogues à celle développée plus haut.