Système dynamique de Lorenz

Un article de Wikipédia, l'encyclopédie libre.

Icône de détail Pour consulter un article plus général, voir théorie du chaos

En 1963, le météorologue Edward Lorenz est le premier à mettre en évidence le caractère vraisemblablement chaotique de la météorologie.

Sommaire

[modifier] Modèle de Lorenz

Mathématiquement, le couplage de l'atmosphère avec l'océan est décrit par le système d'équations aux dérivées partielles couplées de Navier-Stokes de la mécanique des fluides. Ce système d'équations était beaucoup trop compliqué à résoudre numériquement pour les premiers ordinateurs existant au temps de Lorenz. Celui-ci eut donc l'idée de chercher un modèle très simplifié de ces équations pour étudier une situation physique particulière : le phénomène de convection de Rayleigh-Bénard. Il aboutit alors à un système dynamique différentiel possédant seulement trois degrés de liberté, beaucoup plus simple à intégrer numériquement que les équations de départ.

[modifier] Système dynamique différentiel de Lorenz

Ce système différentiel s'écrit :

\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t}=\sigma \bigl( y(t) - x(t) \bigr)\\
\frac{\mathrm{d}y(t)}{\mathrm{d}t}=\rho \, x(t) - y(t) - x(t) \, z(t)\\
\frac{\mathrm{d}z(t)}{\mathrm{d}t} =x(t) \, y(t) - \beta \, z(t) \end{cases}

Dans ces équations, σ,ρ – respectivement le nombre de Prandtl et le rapport du nombre de Rayleigh sur un Rayleigh critique – et β sont trois paramètres réels.

x(t) est proportionnel à l'intensité du mouvement de convection, y(t) est proportionnel à la différence de température entre les courants ascendants et descendants, et z(t) est proportionnel à l'écart du profil de température vertical par rapport à un profil linéaire (Lorenz 1963, p. 135).

[modifier] Points fixes

Les points fixes du système sont les solutions (x,y,z) constantes du système différentiel. Il en existe trois :

  • le point fixe (0, 0, 0), qui existe quelles que soient les valeurs des paramètres réels σ,ρ et β.
  • les deux points fixes symétriques : \left( - \sqrt{\beta(\rho - 1)},-\sqrt{\beta( \rho - 1)},  \rho - 1\right) et : \left( \sqrt{\beta( \rho - 1)},\sqrt{\beta( \rho - 1)}, \rho - 1 \right), qui n'existent que lorsque ρ > 1.

[modifier] Attracteur étrange

Icône de détail Article détaillé : attracteur de Lorenz.
Attracteur étrange de Lorenz
Attracteur étrange de Lorenz

Lorsque les paramètres σ,ρ et β prennent les valeurs suivantes :σ = 10, ρ = 28 et β = 8 / 3, le système dynamique différentiel de Lorenz présente un superbe attracteur étrange en forme d'ailes de papillon, représenté sur la figure ci-contre.

Pour presque toutes les conditions initiales (différentes de celles des points fixes), l'orbite du système se promène sur l'attracteur, la trajectoire commençant par s'enrouler sur une aile, puis sautant d'une aile à l'autre pour commencer à s'enrouler sur l'autre aile, et ainsi de suite, de façon apparemment erratique.

[modifier] Articles connexes

[modifier] Bibliographie