Fonction de Voigt

Un article de Wikipédia, l'encyclopédie libre.

Une fonction de Voigt est le produit de convolution d'une fonction gaussienne et d'une fonction lorentzienne ayant le même sommet. C'est donc une fonction de la forme

V(x) = \int_{- \infty}^{+ \infty} e^{-a \cdot ((x-t)-x_0)^2} \times \frac{1}{b + (t-x_0)^2} dt

soit, si le sommet se trouve en 0 (x0 = 0) :

V(x) = \int_{- \infty}^{+ \infty} \frac{e^{-a \cdot (x-t)^2}}{b + t^2} dt

Image:Fonction voigt.png

Sommaire

[modifier] Applications

En spectrométrie d'émission ou d'absorption, une raie correspond à l'énergie de transition entre deux niveaux électroniques. Le spectre devrait donc présenter une bande de fréquence (ou d'énergie) indéfiniment mince (signal monochromatique). Dans les faits, cette raie a une certaine largeur. Dans le cas d'un gaz, la fonction de Voigt permet de modéliser la largeur de cette raie en raison :

En diffractométrie de rayons X, la fonction de Voigt permet de décrire le profil des pics de diffraction si l'on considère :

[modifier] Approximations des fonctions de Voigt

Le produit de convolution n'est pas une opération simple. À l'époque où l'informatique ne permettait pas d'effectuer ce calcul, il a fallu trouver des approximations de cette fonction de Voigt.

[modifier] Pseudo-fonction de Voigt

Pseudo-fonctions de Voigt
Pseudo-fonctions de Voigt

Une pseudo-fonction de Voigt (pseudo-Voigt function en anglais) est la somme d'une gaussienne et d'une lorentzienne ayant la même position et la même aire. Le facteur de proportionnalité, noté η, est appelé facteur de Lorentz :

PV = η·L + (1-η)·G

Pour η = 0, on retrouve une gaussienne et pour η = 1, on retrouve une lorentzienne.

Différence entre une fonction de Voigt et une pseudo-Voigt (η = 0,834) de même position et même aire
Différence entre une fonction de Voigt et une pseudo-Voigt (η = 0,834) de même position et même aire

Si l'on compare les pseudo-fonctions de Voigt avec une fonction de Voigt (σ = 1 pour la gaussienne, Γ = 1 pour la lorentzienne), le paramètre de Lorentz donnant l'écart quadratique minimal vaut

η = 0,834 ± 0,001

[modifier] Fonction de Pearson VII

y = \frac{1}{\left [ 1+ \left (\frac{2(x-x_0) \cdot \sqrt{2^{1/M}-1}}{w} \right )^2 \right ]^M}

M est le paramètre de forme, ou « largeur de Pearson ».

On écrit parfois une expression simplifiée :

y = \left [ 1 + K^2 \frac{(x-x_0)^2}{M} \right ]^{-M}

On a

  • M < 1 : profil dit 'super lorentzien' ;
  • M = 1 : profil de Cauchy : Lorentz (lorentzienne) : Breit-Wigner ;
  • M = ∞ : profil de Gauss-Laplace (gaussienne, loi normale).

Cette fonction est utilisée depuis 1977 pour représenter la forme des pics de diffraction X[1].

[modifier] Annexes

[modifier] Bibliographie

  • M.M. Hall, The Approximation of Symmetric X-Ray Peaks by Pearson Type VII Distributions, J. Apl. Cryst., Vol. 10, 66 (1977).

[modifier] Articles connexes

[modifier] Lien externe

[modifier] Référence

  1. M.M. Hall, The Approximation of Symmetric X-Ray Peaks by Pearson Type VII Distributions, J. Apl. Cryst., Vol. 10, 66 (1977).
Autres langues