Fonction êta de Dirichlet

Un article de Wikipédia, l'encyclopédie libre.

La fonction êta de Dirichlet peut être définie par

\eta(s) = \left(1-2^{1-s}\right) \zeta(s)

\zeta\, est la fonction zêta de Riemann. Néanmoins, elle peut aussi être utilisée pour définir la fonction zêta. Elle possède une expression en série de Dirichlet, valide pour tout nombre complexe s avec une partie réelle positive, donnée par

\eta(s) = \sum_{n=1}^{\infty}{(-1)^{n-1} \over n^s}.

Tandis que ceci est convergent seulement pour s avec une partie réelle positive, elle est sommable au sens d'Abel pour tout nombre complexe, qui servent à définir la fonction êta comme une fonction entière, et montre que la fonction zêta est méromorphe avec un pôle singulier en s = 1.

De manière équivalente, nous pouvons commencer par définir

\eta(s) = \frac{1}{\Gamma(s)}\int_0^\infty \frac{x^s}{\exp(x)+1}\frac{dx}{x}

qui est aussi définie dans la région de la partie réelle positive. Ceci présente la fonction êta comme une transformation de Mellin.

Hardy a donné une démonstration simple de l'équation fonctionnelle pour la fonction êta, qui est

\eta(-s) = 2\pi^{-s-1} s \sin\left({\pi s \over 2}\right) \Gamma(s)\eta(s+1).

À partir de cela, on a immédiatement l'équation fonctionnelle de la fonction zêta également, cela nécessite d'étendre la définition de la fonction êta au plan complexe entier.

[modifier] Méthode de Borwein

Peter Borwein a utilisé des approximations impliquant les polynômes de Tchebychev pour concevoir une méthode pour une évaluation efficace de la fonction êta. Si d_k = n\sum_{i=0}^k \frac{(n+i-1)!4^i}{(n-i)!(2i)!} alors

\eta(s) = -\frac{1}{d_n} \sum_{k=0}^{n-1}\frac{(-1)^k(d_k-d_n)}{(k+1)^s}+\gamma_n(s),

où le terme erroné \gamma_n\, est borné par

\gamma_n(s) \le \frac{3}{(3+\sqrt{8})^n} (1+2|t|)\exp(|t|\pi/2)

t = \Im(s)\,.

[modifier] Publications

Borwein, P., An Efficient Algorithm for the Riemann Zeta Function, Constructive experimental and nonlinear analysis, CMS Conference Proc. 27 (2000), 29-34 ou http://www.cecm.sfu.ca/~pborwein/

[modifier] Voir aussi