Théorème de Gauss-Lucas

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Théorème de Gauss.

En mathématiques, le théorème de Gauss-Lucas, ou théorème de Lucas, établit une propriété des polynômes complexes. Il énonce que les racines du polynôme dérivé sont situées dans l'enveloppe convexe de l'ensemble des racines du polynôme d'origine.

Ce résultat est évoqué de façon implicite en 1836 par Carl Friedrich Gauss et prouvé en 1874 par Édouard Lucas[1].

Sommaire

[modifier] Motivation

Il est facile de remarquer que si P(x) =ax^2+ bx +c  \, est un polynôme du second degré, le zéro de P^\prime est la demi-somme des zéros de P\,.

Par ailleurs, si un polynôme de degré  n\, à coefficients réels admet n\, zéros réels distincts x_1<x_2 ..<x_n\,, on voit en utilisant le théorème de Rolle que les zéros du polynôme dérivé sont dans l'intervalle [x_1,x_n]\,.

Le résultat suivant peut être vu comme une généralisation.

[modifier] Enoncé

Soit  P\, un polynôme non constant à coefficients complexes. Alors tout zéro de P^\prime appartient à l'enveloppe convexe de l'ensemble des zéros de P\,.

[modifier] Preuve

Soit P(z)= \prod_{i=1}^r (z-a_i)^{n_i} la décomposition de P\, en facteurs irréductibles : les complexes a_i\, sont les zéros distincts du polynôme, les entiers n_i\, leurs multiplicités.

On a alors

 \frac{P^\prime(z)}{P(z)}= \sum_{i=1}^r\frac{n_i}{z-a_i}

En particulier, si P^\prime(z)=0 et P(z)\not=0,

   \sum_{i=1}^r\frac{n_i}{z-a_i}=0\ ou encore \ \sum_{i=1}^rn_i\frac{\overline{z}-\overline{a_i} } {\vert z-a_i\vert^2}=0,

ce qui s'écrit aussi

\big(\sum_{i=1}^r\frac{n_i}{\vert z-a_i\vert^2}\big)\overline{z}= \sum_{i=1}^r\frac{n_i}{\vert z-a_i\vert^2}\overline{a_i}

En prenant les conjugués, on voit que z\, est un barycentre à coefficients positifs des a_i\,.

Le cas où z\, est aussi zéro de  P\, est évident.

[modifier] Notes et références

  1. Édouard Lucas, Propriétés géométriques des fractions rationnelles, C. R. Acad. Sci. Paris, t. 77 et 78 (1874)
Autres langues