Analyse thermomécanique

Un article de Wikipédia, l'encyclopédie libre.

L'analyse thermomécanique ou ATM (en anglais thermomechanical analysis, TMA) est une méthode d'Analyse Thermique.

Dans son sens le plus large, l'Analyse Thermique est une technique permettant la mesure d'une propriété physique ou chimique d'un matériau en fonction de la température.

Sommaire

[modifier] Principe général

L'analyse thermomécanique mesure de façon précise les déplacements d'un échantillon en fonction de la température, du temps, et de la force constante appliquée.

Les transitions éventuelles d'une substance peuvent être détectées[1]. Les plastiques amorphes, par exemple, ont généralement plusieurs transitions.

Les appareils d'ATM enregistrent en continu la déformation d'une substance, sous charge fixe, pendant qu'elle est soumise à un programme de température contrôlé.

La thermodilatométrie, d'autre part, mesure les dimensions d'une substance en fonction de la température sans appliquer de force. Pour cette technique, il est possible de calculer la courbe dérivée de la fonction :

{\Delta L \over L_0} = f (T)

avec :

\Delta L\,, l'augmentation de longueur
L0, la longueur initiale de l'échantillon
T, la température,

ce qui permet de déterminer le coefficient de dilatation linéaire (ou linéique) α (aussi noté αL).

Des accessoires fournis avec les appareils de TMA permettent d'accéder au coefficient de dilatation volumique k (aussi noté αV ou β). Pour un matériau isotrope[1] :

k = 3 · α.

Note : la dilatation thermique des matériaux est inversement proportionnelle à leur rigidité[2]. Les plastiques ont ainsi des coefficients de dilatation élevés comparativement aux métaux.

[modifier] Exemple : mesure des transitions vitreuses

La transition vitreuse s'observe fréquemment pour les polymères. Ce phénomène s'accompagne en particulier d'une augmentation du volume libre, donc du coefficient de dilatation.

Le coefficient de dilatation thermique (coefficient of thermal expansion, CTE) variant brusquement au voisinage de la température de transition vitreuse Tg des polymères, il sera possible de déterminer en TMA la température de cette transition[3].

Pour un polymère donné, le coefficient α mesuré à une température supérieure à la transition vitreuse est environ trois fois plus élevé que celui mesuré à l'état vitreux[4].

L'exemple de la figure suivante illustre l'évolution de la longueur en fonction de la température pour un élastomère : le polychloroprène. On observe par ailleurs une zone de fusion (TF) révèlant la présence de zones cristallines.

Thermogramme d'un polychloroprène, obtenu par analyse thermomécanique.
Thermogramme d'un polychloroprène, obtenu par analyse thermomécanique.

Note : pour ce polymère, dans la région caoutchoutique, la dilatométrie a permis de mesurer α caout = 200 · 10-6 /°C.

[modifier] Description succincte d'un appareil TMA

L'appareillage comprend donc[5] :

  • un four (de volume assez faible en général) régulé, programmé (vitesse de chauffe de 0,01 à 100°C/min ; gamme de -150 à +1000°C) muni d'un thermocouple placé près de l'échantillon ;
  • un capteur de déplacement (résolution en nanomètres) approprié, de type inductif (LVDT), pour mesurer la variation dimensionnelle de l'échantillon (domaine de mesure de ± 5 mm ; longueur de l'échantillon jusqu'à 20 mm) ;
  • un système contrôlant l'application de la force transmise (gamme de ± 1 N ou plus) par la sonde (ou palpeur) de mesure de déplacement à l'échantillon ;
  • un système de traitement du signal résultant ;
  • un système d'évaluation des données ; un graphe est produit.

Il est possible de travailler sous atmosphère contrôlée (inerte ou oxydante) ou sous vide.

Schéma de principe d'un analyseur thermomécanique TMA.
Schéma de principe d'un analyseur thermomécanique TMA.

[modifier] Modes de mesure

Les sondes de mesure et les supports d'échantillon sont généralement en quartz[6]. La géométrie de ces pièces impose un mode de mesure. Les modes possibles sont les suivants :

  • expansion (sonde utilisée sans force sur l'échantillon) pour la détermination de coefficient de dilatation en dilatométrie ;
  • pénétration ; une forte contrainte, créée par une forte force appliquée par une sonde de faible diamètre, augmente la contribution de la pénétration par rapport à l'expansion ;
  • traction (échantillon fixé par deux petites pinces) pour l'étude de films ou de fibres sous traction ;
  • flexion trois points (montage composé d'appuis en forme de couteau) ;
  • expansion volumique (montage composé d'un creuset et d'une sonde à fond plat) pour l'étude de la dilatation des poudres, par exemple.

Pour les modes en pénétration et en flexion, une contrainte plus importante est imposée à l'échantillon.

Modes d'investigation courants en TMA.
Modes d'investigation courants en TMA.

[modifier] Analyse DMA/TMA

La TMA peut être couplée à la DMA : l'analyse DMA/TMA simultanée disponible sur certains appareils de DMA permet par exemple l'étude de la transition vitreuse par les deux méthodes tout en mesurant la dilatation thermique de l'échantillon polymère par TMA.

[modifier] Méthode TMAD

Une autre méthode dérivée, la TMA dynamique ou TMAD (en anglais DTMA ou DLTMA, dynamic load TMA), applique une contrainte sinusoïdale (fréquence jusqu'à 1 Hz) ainsi qu'une rampe de température linéaire à l'échantillon, et mesure la déformation sinusoïdale résultante.
Les facteurs externes, tels la vitesse de balayage en température ainsi que la fréquence de la sollicitation mécanique, affectent la température de transition vitreuse Tg d'un polymère.
La méthode TMAD permet d'accéder au module de Young et peut détecter les faibles transitions secondaires d'un polymère.

[modifier] Applications

Voici une liste non exhaustive :

[modifier] Annexes

[modifier] Articles connexes

[modifier] Notes et références

  1. ab R. Bourgeois, H. Chauvel et J. Kessler, Mémotech Génie des matériaux, p. 79, 76, éd. Casteilla, Paris, 2001, ISBN 2713522463
  2. R. Deterre et G. Froyer, Introduction aux matériaux polymères, p. 106-107, Tec & Doc Lavoisier, Paris, 1997, ISBN 2743001712
  3. Comme on le fait en DSC (une méthode d'analyse thermique complémentaire) en utilisant la variation de la chaleur spécifique Cp.
  4. G. Lachenal, Bull. Scient. sur la TMA, p. 1, Laboratoire d'Études des Matériaux Plastiques et des Biomatériaux II, UCBL, Villeurbanne, 1984.
  5. Des ordres de grandeurs sont indiqués entre parenthèse.
  6. Le coefficient de dilatation linéaire de ce minéral est extrèmement faible : α = 0,59 · 10-6 /°C.
Autres langues