Vitesse cosmique

Un article de Wikipédia, l'encyclopédie libre.

En 1883, l'écrivain russe Konstantin Tsiolkovsky présentait dans son ouvrage L’Espace libre les concepts fondamentaux pour la construction de fusées à réaction comme unique moyen de quitter la gravité terrestre.

Tsiolkovsky introduisait trois vitesses minimales théoriques appelées respectivement première, deuxième et troisième vitesse cosmique.

Sommaire

[modifier] Première vitesse cosmique

La première vitesse cosmique représente la vitesse de satellisation minimale autour de la Terre. Vitesse minimale qu’il faut théoriquement communiquer à un corps, au départ de la Terre, pour le satelliser autour d’elle en orbite basse. Elle est déterminée par la relation

\frac{v_1^2}{R} = \frac{G M}{R^2},

R est le rayon de l'orbite, assimilé au rayon terrestre (6370 km, bien qu'en en réalité une orbite n'échappe à l'usure de l'atmosphère terrestre que si elle est à une altitude supérieure à 200 kilomètres), M la masse de la Terre (environ 6×1024 kg) et G la constante de gravitation. Cette relation signifie que la force de gravitation exercée par la Terre (GMm / R2, m étant la masse de la fusée) est exactement compensée par la force centrifuge (m v_1^2 / R) de la fusée quand celle-ci est en orbite circulaire.

La première vitesse cosmique vaut ainsi

v_1 = \sqrt{\frac{G M}{R}},

soit environ

v_1 \simeq 7,\!9\;{\rm km}\cdot{\rm s}^{-1} \simeq 28\,500\;{\rm km}\cdot{\rm h}^{-1} .

[modifier] Deuxième vitesse cosmique

La deuxième vitesse cosmique correspond à la vitesse de libération d’un corps quittant la Terre. C’est la vitesse minimale au-delà de laquelle un corps peut s’éloigner définitivement de la Terre, en tout cas tant que l'on néglige la présence du Soleil et de notre Galaxie. Elle est déterminée, avec les mêmes notations que précédemment, par la relation

\frac{v_2^2}{2}  = \frac{G M}{R},

équation qui décrit que la somme de l'énergie cinétique et de l'énergie potentielle de gravitation se compensent, conférant une énergie totale nulle à la fusée, condition nécessaire à ce qu'elle puisse s'échapper de l'attraction terrestre.

La deuxième vitesse cosmique vaut ainsi

v_2 = \sqrt{\frac{2 G M}{R}} = \sqrt{2}\, v_1 ,

soit environ

v_2 \simeq 11,\!2\;{\rm km}\cdot{\rm s}^{-1} \simeq 40\,300\;{\rm km}\cdot{\rm h}^{-1} .

À noter qu'ici, il n'y a pas d'ambiguité sur la quantité R qui correspond au rayon terrestre, puisque c'est de là qu'est lancée la fusée, contrairement à la première vitesse cosmique où la quantité R était sensée représenter le rayon d'une orbite basse, légèrement supérieur (d'environ 3%) au rayon terrestre. La vitesse de libération augmente avec la compacité de l'objet, c'est-à-dire son rapport M/R. Par exemple, celle de Jupiter est de 59,5 km/s.

[modifier] Troisième vitesse cosmique

La troisième vitesse cosmique est définie comme étant la vitesse de libération d’un corps quittant le système solaire depuis l'orbite terrestre. Elle est déterminée de la même façon que la seconde vitesse cosmique, si ce n'est qu'il faut tenir compte de l'énergie potentielle de gravitation de la Terre et du Soleil, et du fait que la Terre est elle-même animée d'une certaine vitesse vT sur son orbite. Ainsi,

\frac{(v_3 + v_{\rm T})^2}{2} = \frac{G M_\odot}{d} + \frac{G M}{R},

d correspondant à la distance Terre-Soleil, soit une unité astronomique (environ 150 millions de kilomètres) et M à la masse du Soleil. Or la vitesse de la Terre sur son orbite correspond à la première vitesse cosmique du Soleil pour une distance d'une unité astronomique, soit

v_{\rm T} = \sqrt{\frac{G M_\odot}{d}}.

Par conséquent

v_3 = \sqrt{\frac{2 G M_\odot}{d} + \frac{2 G M}{R}} - \sqrt{\frac{G M_\odot}{d}}.

L'application numérique donne alors

v_3 \simeq 13,\!8\;{\rm km}\cdot{\rm s}^{-1} \simeq 49\,800\;{\rm km}\cdot{\rm h}^{-1} .

[modifier] Voir aussi