Théorème de Radon

Un article de Wikipédia, l'encyclopédie libre.

Les projections des rayons X sont clairement visibles dans cette coupe prise par un scanneur.
Les projections des rayons X sont clairement visibles dans cette coupe prise par un scanneur.

Le théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon.

En pratique, il est bien entendu impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage. Mais il existe des méthodes pour combler ce manque d'information conformément à ce que l'on sait a priori sur l'image, par exemple les méthodes d'entropie maximale (voir théorème de Cox-Jaynes).

[modifier] Transformée de Radon

La transformée de Radon est la formulation mathématique d'une projection. La transformée de Radon d'une fonction de deux variables f est donné par l'intégrale double selon une direction \varphi :

 p_{\varphi }(x')=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\,\delta(x\cos(\varphi )+y\sin(\varphi )-x')\,\mathrm dx\,\mathrm dy

δ(x) est l'impulsion de Dirac.

Dans le cas où x' et \varphi sont discrets, la transformée de Radon est équivalente à la transformée de Hough pour une droite.

[modifier] Transformée inverse de Radon

La reconstruction de la fonction f en coordonnées polaires peut alors être réalisée à l'aide de la transformée inverse de Radon:

 \hat{f}(r,\theta)=\int_{-\infty}^{\infty} \mathcal{F}^{-1}[|\omega
|]*p_{\varphi}(x')\,\mathrm d\varphi

\mathcal{F} est la transformée de Fourier. La transformée inverse de Radon consiste à filtrer toutes les projections et à les propager sur toute l'image dans la même direction où ils avaient été projetés ; d'où le nom « reconstruction par rétroprojection filtrée » parfois aussi utilisé.