Série d'Eisenstein

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, les séries d'Eisenstein sont des formes modulaires particulières avec une expansion en séries infinies qui peuvent s'écrire directement.

Sommaire

[modifier] Séries d'Eisenstein pour le groupe modulaire

Pour un nombre complexe τ de partie imaginaire strictement positive, on définit la série d'Eisenstein G2k(τ) pour chaque entier k > 1 comme :


G_{2k}(\tau) = \sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{2k}}.

C'est remarquable, la série d'Eisenstein est une forme modulaire. Explicitement, si  a,b,c,d \in \mathbb{Z} avec adbc = 1 alors :


G_{2k} \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} G_{2k}(\tau)

Donc, G2k est une forme modulaire de poids 2k.

[modifier] Relations de récurrence

Toute forme modulaire holomorphe pour le groupe modulaire peut être écrite comme polynôme en G4 et G6.

Soit dk = (2k + 3)k!G2k + 4. On dispose de la relation :

\sum_{k=0}^n {n \choose k} d_k d_{n-k} = \frac{2n+9}{3n+6}d_{n+2}

Ici, {n \choose k} est le coefficient binomial et d0 = 3G4 et d1 = 5G6.

Les dk apparaissent dans l'expansion en séries entières de la fonction de Weirstrass :

\wp(z)
=\frac{1}{z^2} + z^2 \sum_{k=0}^\infty \frac {d_k z^{2k}}{k!}
=\frac{1}{z^2} + \sum_{k=1}^\infty (2k+1) G_{2k+2} z^{2k}

[modifier] Séries de Fourier

Posons q = eiτ. Alors les séries de Fourier des séries d'Eisenstein sont :


G_{2k}(\tau) = 2\zeta(2k) \left(1+c_{2k}\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)

où les coefficients de Fourier c2k sont donnés par :


c_{2k} = \frac{(2\pi i)^{2k}}{(2k-1)! \zeta(2k)} = \frac {-4k}{B_{2k}}
.

Ici, les Bn sont les nombres de Bernoulli, ζ(z) est la fonction de Riemann et σp(n) est simplement la somme des p-ièmes puissances des diviseurs de n.

G_4(\tau)=\frac{\pi^4}{45} \left[ 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n} \right]
G_6(\tau)=\frac{2\pi^6}{945} \left[ 1- 504\sum_{n=1}^\infty \sigma_5(n) q^{n} \right]

La sommation sur q se résume à la série de Lambert :

\sum_{n=1}^{\infty} q^n \sigma_a(n) = \sum_{n=1}^{\infty} \frac{n^a q^n}{1-q^n}

Pour un nombre complexe q de module <1.

[modifier] Identités de Ramanujan

Ramanujan a donné de nombreuses identités intéressantes entre les tous premiers termes.

L(q)=1-24\sum_{n=1}^\infty \frac {nq^n}{1-q^n}
M(q)=1+240\sum_{n=1}^\infty \frac {n^3q^n}{1-q^n}
N(q)=1-504\sum_{n=1}^\infty \frac {n^5q^n}{1-q^n}

Alors :

q\frac{dL}{dq} = \frac {L^2-M}{12}
q\frac{dM}{dq} = \frac {LM-N}{3}
q\frac{dN}{dq} = \frac {LN-M^2}{2}
Autres langues