Règle de Hund

Un article de Wikipédia, l'encyclopédie libre.

En physique atomique, les règles de Hund se refèrent à un ensemble de règles simples utilisées pour déterminer quel est le terme spectroscopique fondamental de l'atome considéré. Elles furent proposées par Friedrich Hund. En chimie, la première de ces règles est particulièrement importante, et l'on se réfère souvent à elle seule sous le terme de "règle de Hund".


Les trois règles de Hund sont :

  1. Pour une configuration électronique donnée, le terme de plus faible énergie est celui maximisant le spin total ( S \, maximal).
  2. Pour un spin total donné, le terme de plus faible énergie est celui de plus grande valeur de  L \, (moment cinétique orbital total).
  3. Pour un terme spectroscopique donné, dans un atome ayant sa couche externe à moitié pleine ou moins, le niveau de plus faible énergie est celui minimisant  J \, (nombre quantique lié au couplage spin-orbite). Dans un atome ayant sa couche externe plus que à moitié pleine, le niveau de plus faible énergie est celui de  J \, le plus élevé.

Ces règles montrent comment trouver de manière simple le terme spectroscopique fondamental. Elles supposent que le couplage spin-orbite est négligeable devant la répulsion des électrons de la couche externe, mais qu'il est aussi dominant par rapport à toutes les autres interactions non prises en compte. On parle alors de régime de couplage spin-orbite.

Les orbitales pleines ou les orbitales vides ne contribuent ni au spin total S, ni au moment cinétique orbitalaire total L. On peut montrer que dans ces cas là, le terme électrostatique résiduel (dû à la répulsion électronique) et le couplage spin-orbite, ne peuvent que déplacer en bloc tous les niveaux d'énergie. De ce fait, on ne considère en général que les électrons de valence pour ordonner les niveaux d'énergie.


Sommaire

[modifier] Règle 1

En raison du principe d'exclusion de Pauli, 2 électrons ne peuvent partager les mêmes nombres quantiques dans le même système. Ainsi, chaque orbitale spatiale ne peut abriter que 2 électrons, de spin opposé (respectivement un spin selon une direction arbitraire Z de S_Z = 1/2 \, et S_Z = -1/2 \, ). La première règle de Hund stipule que le plus bas niveau en énergie est celui maximisant la valeur de S, somme des spin respectifs de chaque électron se trouvant dans les orbitales de valence de l'atome. Ainsi, chaque orbitale est d'abord occupée par un seul électrons, ayant tous le même spin, jusqu'à ce qu'apparaissent nécessairement des paires.

On dit parfois qu'il s'agît du plus bas état en énergie parce qu'il oblige les électrons non appariées à se trouver dans des orbitales spatiales différents, et qu'il en résulte une plus grande distance moyenne entre électrons, réduisant l'énergie de répulsion électrostatique entre eux. Mais des calculs plus précis ont montrés que cette explication peut être fausse, en particulier dans le cas de systèmes légers.

[modifier] Exemple

Considérons l'état fondamental de l'atome de silicium. La configuration électronique de Si est :  1s^2, 2s^2, 2p^6, 3s^2, 3p^2 \, . Il nous faut considérer seulement les électrons  3p^2 \, , pour lesquels on peut montrer que les termes spectroscopiques possibles sont  {}^1\!D ,{}^3\!P ,{}^1\!S . La première règle de Hund dit alors que le terme d'énergie la plus basse est  {}^3\!P  \, qui correspond à  S = 1 \, .

[modifier] Règle 2

Cette règle vise aussi à minimiser l'énergie de répulsion entre électrons. Elle peut être comprises en utilisant l'analogie classique suivante : si tous les électrons orbitent dans une même direction (celle de moment cinétique orbitalaire le plus élevé), ils se rencontrent moins souvent que si certains d'entre eux orbitent dans des directions opposées Dans ce cas la force de répulsion électrostatique augmente, ce qui sépare les électrons, ajoutant une énergie potentielle répulsive, et donc augmentant l'énergie.

[modifier] Exemple

Pour le silicium, il n'y a pas de choix de l'état triplet de spin  (S = 1) \, . La seconde règle n'est donc pas utile. L'atome le plus léger requierant cette règle pour déterminer don terme de plus basse énergie est le titane (Ti, Z = 22) de configuration électronique 1s2 2s2 2p6 3s2 3p6 4s2 3d2. Cela conduit à 5 termes spectroscopiques dont 3 singulets (1S, 1D, et 1G) et 2 triplets (3P et 3F). On déduit de la première règle que le terme fondamental est un des deux triplets, et de la seconde règle que le terme fondamental est 3F (avec L = 3) plutôt que 3P (avec L = 1).

[modifier] Règle 3

Cette règle prend en compte les différences d'énergie liées au couplage spin-orbite. Dans le cas où le couplage est faible devant les répulsions électrostatiques des électrons,  L \, et  S \, restent des nombres quantiques utilisables et la différence d'énergie est donnée par :

 \begin{matrix} \Delta E & = & \zeta (L,S) \{ \mathbf{L}\cdot\mathbf{S} \} \\ \ & = & \ (1/2) \zeta (L,S) \{ J(J+1)-L(L+1)-S(S+1) \} \end{matrix}

La valeur de  \zeta (L,S)\, passe de +1 à -1 lorsque l'orbitale est plus que à moitié pleine.Ce terme donne la dépendance de l'état fondamental en énergie avec  J \, .

[modifier] Exemples

Le terme de plus faible énergie du silicium,  {}^3\!P \, est dégénéré trois fois quand on néglige le couplage spin-orbite. Les valeurs de J lorsqu'on le prend en compte sont donc  J = 2,1,0 \, . Avec seuulement 2 électrons dans l'orbitale (qui peut en contenir 6), elle est moins que à moitié plein, et donc le niveau d'énergie la plus basse est  {}^3\!P_0 \, .

Pour le soufre (S), le terme de plus faible énergie est à nouveau  {}^3\!P \, avec des valeurs de  J = 2,1,0 \, pour le couplage spin-orbite. Mais il y a à présent 4 électrons dans l'orbitale, le terme fondamental est donc  {}^3\!P_2 \, .

[modifier] Notes

Les règles de Hund sont parfois utilisées pour ordonner les niveaux excités. C'est une application abusive de la règle, qui est générallement incorrecte.

[modifier] Références

Ces références sont celles données par la version anglaise de cette article, et n'ont pas été vérifiées.

  • Elementary Atomic Structure, physics, by G.K. Woodgate (McGraw-Hill, 1970) [ISBN 978-0198511564]
  • G.L. Miessler and D.A. Tarr, Inorganic Chemistry (Prentice-Hall, 2nd edn 1999) [ISBN 0138418918], pp.358-360
  • T. Engel and P. Reid, Physical Chemistry (Pearson Benjamin-Cummings, 2006) [ISBN 080533842X], pp.477-479

[modifier] Voir aussi

[modifier] Liens externes

Ces liens externes sont celles données par la version anglaise de cette article, et n'ont pas été vérifiés.