Image:Phanerozoic Sea Level-fr.svg

Un article de Wikipédia, l'encyclopédie libre.

Phanerozoic_Sea_Level-fr.svg (Fichier SVG, résolution de 523 × 360 pixels, taille : 24 Kio)

Ci-dessous, retrouvez page de description du fichier provenant de Commons.
Description
English: This figure compares the Hallam et al. (1983) and Exxon eustatic (global) sea level reconstructions for the Phanerozoic eon. The Exxon curve [1] is a composite from several reconstructions published by the Exxon corporation (Haq et al. 1987, Ross & Ross 1987, Ross & Ross 1988). Both curves are adjusted to the 2004 ICS geologic timescale.

Hallam et al. and Exxon use very different techniques to measuring global sea level changes. Hallam's approach is qualitative and relies on regional scale observations from exposed geologic sections and estimates of the areas of flooded continental interiors. Exxon's approach relies on the interpretation of seismic profiles to determine the extent of coastal onlap in subsequently buried sedimentary basins. Hallam is insensitive to rapid fluctuations in sea level. Exxon is sensitive to rapid fluctuations but tends to overinterpret local geologic changes resulting in bias towards reporting unphysical rapid fluctuations.

The depth scale is as reported by Exxon. Because Hallam is reported as qualtitative (i.e. uncalibrated), these sea level changes were scaled to match the Exxon record during the period 0-250 Myr.

A black bar is added to indicate the scale of sea level fluctuations during the last glacial/interglacial transition. This change occurred purely within the last 20 kyrs, and note that neither system of measurements in capable of resolving changes on this time scale. It also should be noted that very rapid fluctuations of similar scale are potentially possible during all periods during which large scale ice sheets are present (see: Phanerozoic climate change).

On the scale of this figure, the melting of all existing ice sheets would result in a sea level rise of ~80 meters. Changes on larger scales, which evidently occurred many times in the past, are the result of geologic changes in the structure of ocean basins. Essentially, such changes affect the average depth of the oceans relative to the continents.

Common symbols for geologic periods appear at the bottom.
Source

Image:Recent Sea Level Rise.png by Robert A. Rohde. This figure was prepared by Robert A. Rohde from published data, and is incorporated into the Global Warming Art project. Translation in french and conversion to svg was done by SuperManu

Date

2007-11-01

Author

Robert A. Rohde, translated by SuperManu

Permission
(Reusing this image)
Image from Global Warming Art

This image is an original work created for Global Warming Art.

Permission is granted to copy, distribute and/or modify this image under either:


Please refer to the image description page on Global Warming Art for more information

GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 only as published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "Text of the GNU Free Documentation License."

العربية | Català | Česky | Deutsch | English | Español | فارسی | Français | Italiano | 日本語 | Nederlands | ‪Norsk (bokmål)‬ | Polski | Português | Русский | Svenska | Türkçe | Tiếng Việt | ‪中文(简体)‬ | ‪中文(繁體)‬ | +/-


[edit] References

  • Hallam, A., Phil. Trans. R. Soc. B 325, 437-455 (1989).
  • Harland, W.B. and many others, A Geologic Time Scale, (1982).
  • Haq, B., J. Hardenbol, P. Vail., Science, 235, 156-1167 (1987).
  • Ross, C.A. & J.R.P. Ross, Cushman Foundation for Foraminiferal Research Spec. Publ. 24, 137-149 (1987).
  • Ross, C.A. & J.R.P. Ross in Sea-level Change: an Integrated Approach (Eds. Wilgus, C.K., Hastings, B.J., Posamentier, H., van Wagoner, J.C., Ross, C.A., and Kendall, C.G. St. C.), SEPM Spec. Pub. 42:71-108 (1988).

[edit] Notes

  • Because Exxon traditionally used an in-house (i.e. unpublished) system for estimating the geologic age of stratigraphic sections it is not possible to perform an exact recalibration of the time scale. Instead it was adjusted assuming the Harland et al. 1982 time scale was a reasonable approximation.
Atelier graphique This image has been improved by Wikigraphists of the French Graphics Lab. You can also propose images to improve as well.

Cette image a été améliorée par les Wikigraphistes de l'Atelier graphique. Vous pouvez aussi proposer des images à améliorer.

This vector image was created with Inkscape.
This SVG file uses embedded text that can be easily translated into your language. Learn more.

For SVG images, you can use this page to translate it into your language.


العربية | Català | Dansk | Deutsch | English | Esperanto | Español | Français | Galego | Italiano | 日本語 | Lietuvių | Magyar | Nederlands | Polski | Português | Русский | Svenska | Українська | +/-

Historique du fichier

Cliquer sur une date et une heure pour voir le fichier tel qu’il était à ce moment-là

Date et heureDimensionsUtilisateurCommentaire
actuel1 novembre 2007 à 15:55523×360 (24 Kio)Emmanuel.boutet
1 novembre 2007 à 15:54523×360 (24 Kio)Emmanuel.boutet ({{Information |Description= {{en|This figure compares the Hallam et al. (1983) and Exxon eustatic (global) en:sea level reconstructions for the en:Phanerozoic eon. The Exxon curve [http://hydro.geosc.psu.edu/)