Lemme de Fatou

Un article de Wikipédia, l'encyclopédie libre.

Le lemme de Fatou est un important résultat dans la théorie de l'intégration de Lebesgue. Il a été prouvé par le mathématicien français Pierre Fatou (1878-1929). Ce lemme traite d'un cas où une propriété de convergence simple d'une suite de fonctions conduit à une information sur la limite de l'intégrale de cette suite.

Il est en général présenté dans une suite de trois résultats : d'abord le théorème de convergence monotone, qui sert ensuite à démontrer le lemme de Fatou, puis celui-ci est utilisé pour démontrer le théorème de convergence dominée.

Ce lemme porte parfois le nom de théorème de Fatou-Lebesgue.

Sommaire

[modifier] Énoncé

Soient (E,\mathcal{A},\mu) un espace mesuré et A\in\mathcal{A} une partie mesurable de E. On considère (f_n)_{n\in\mathbb{N}} une suite de fonctions mesurables de A à valeur dans l'ensemble des réels positifs \R^+. Si pour tout x\in A

f(x)=\liminf_{n\rightarrow\infty}f_n(x)=\lim_{n\rightarrow\infty}\inf_{i\geq n}f_i(x)

alors la fonction f:A\longrightarrow\overline{\R^+}=[0,+\infty] est mesurable et vérifie :

\int_A f\;d\mu\leq\liminf_{n\rightarrow\infty}\int_A f_n\;d\mu.

[modifier] Démonstration

Définissons la suite de fonctions (g_n)_{n\in\mathbb{N}} par \forall x\in A,\quad g_n(x)=\inf_{i\geq n}f_i(x).

Les fonctions gn sont mesurables car définies en tant qu'infimmum d'une famille de fonctions mesurables. Par construction g_i\leq g_j si i\leq j donc la suite (g_n)_{n\in\mathbb{N}} satisfait les hypothèses du théorème de convergence monotone (car elle est positive et croissante), et donc:

\lim_{n\rightarrow\infty}\int_A g_n\;d\mu=\int_A\lim_{n\rightarrow\infty}g_n\;d\mu=\int_A\liminf_{n\rightarrow\infty}f_n\;d\mu=\int_A f\;d\mu

Or gn est une fonction minorant fi si i est plus grand que n donc

\forall i\geq n,\quad\int_A g_n\;d\mu\leq\int_A f_i\;d\mu\qquad\text{et par suite}\qquad\int_A g_n\;d\mu\leq\inf_{i\geq n}\int_A f_i\;d\mu.

Nous avons alors démontré en passant à la limite que:

\lim_{n\rightarrow\infty}\int_A g_n\;d\mu=\int_A f\;d\mu\leq\lim_{n\rightarrow\infty}\inf_{i\geq n}\int_A f_i\;d\mu.

[modifier] Voir aussi

[modifier] Liens internes

[modifier] Lien externes