Intégrale de Cauchy

Un article de Wikipédia, l'encyclopédie libre.

[modifier] Introduction

Cette intégrale fait le lien entre l'intégrale de Riemann, classique mais à variables réelles, et les variables complexes.

[modifier] Chemin

Une courbe dans X est une application continue \gamma : [ \alpha , \beta ] \rightarrow X , \alpha < \beta \in \mathbb{R}. On appelle [α,β] l’intervalle de paramétrage de γ , et on note γ * l’image de l’application.

Si \gamma ( \alpha ) = \gamma ( \beta )\, , la courbe est dite fermée.

Un chemin γ est une courbe du plan complexe muni de sa topologie euclidienne, continûment dérivable par morceaux.

Un chemin fermé est une courbe fermée qui est aussi un chemin.

[modifier] Définition de l'intégrale

En considérant un chemin γ , et f : \gamma^{*} \rightarrow \mathbb{C}, une fonction continue, on définit l'intégrale de Cauchy de f sur le chemin γ comme ceci :

\int_{\gamma} f(z) dz = \int_{a}^{b} f ( \gamma(t)) \gamma'(t) dt

Cette intégrale est bien définie au sens de Riemann.