Fibration de Hopf

Un article de Wikipédia, l'encyclopédie libre.

En géométrie la fibration de Hopf donne une partition de la sphère à 3-dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L'espace de base est la sphère à 2-dimensions S2, la fibre modèle est un cercle S1. Ceci signifie notamment qu'il existe une application p de projection de S3 sur S2, telle que les images réciproques de chaque point de S2 soient des cercles.

Cette structure a été découverte par Heinz Hopf en 1931. Cette fibration peut aussi être interprétée comme un fibré principal, de groupe structural le groupe S1 des complexes de module 1.

S^1 \to S^3 \to S^2\,

[modifier] Construction dans un plan complexe

La sphère S3 peut être identifiée à l'ensemble des éléments (z0, z1) de C2]] qui vérifient |z0|2 + |z1|2 = 1. On fait agir sur ce sous-espace le groupe des complexes de module 1, par la formule

\lambda\cdot(z_0,z_1)=(\lambda z_0,\lambda z_1)

Les orbites sous cette action de groupe sont clairement des cercles. L'espace quotient est l'espace projectif complexe CP1, qui s'identifie à S2.

Représentation de la fibration de Hopf à l'aide d'anneaux  entrelacés.
Représentation de la fibration de Hopf à l'aide d'anneaux entrelacés.

Pour construire une application de projection adaptée à ces notations, on peut introduire l'application de Hopf

p(z_0,z_1) = (|z_0|^2-|z_1|^2, 2z_0z_1^*)

le premier élément du couple étant réel, le second complexe, on peut voir le résultat comme un point de R3. Si en outre |z0|2 + |z1|2 = 1, alors p (z0, z1) appartient à la sphère unité. Enfin, on observe que p (z0, z1) = p (z2, z3) si et seulement s'il existe λ de module 1 tel que (z2, z3) = (λz0, λz1).

La représentation ci-contre donne une idée de la disposition des fibres-cercles. Il s'agit d'une vue de la sphère S3 par projection stéréographique. Cette vue remplit tout l'espace et le point diamétralement opposé au centre de la figure est le point à l'infini. Il convient donc d'ajouter aux cercles représentés d'autres cercles continuant à remplir l'espace et un axe perpendiculaire au plan de la photo, qui est le cercle passant par le point à l'infini.

[modifier] Extension

Par le même procédé toute sphère de dimension impaire S2n+1 apparaît comme un espace fibré sur l'espace projectif CPn, avec pour fibres des cercles. Il s'agit en fait d'une restriction du fibré tautologique sur CPn : chaque fibre de ce dernier est une droite complexe, qu'on restreint en un cercle.

Autres langues