Explosion de vapeur

Un article de Wikipédia, l'encyclopédie libre.

Le phénomène d'explosion de vapeur, redouté dans les fonderies et les centrales nucléaires, se produit lorsqu'un liquide froid volatil (de l'eau le plus souvent) entre en contact avec un liquide chaud dont la température est très supérieure à la température d'ébullition du liquide froid.

Selon la rapidité du phénomène, il faut distinguer ce que l'on appelle plus généralement les interactions combustible-réfrigérant (ICR, Fuel-Coolant Interaction en anglais) des explosions. A l'échelle humaine, ceci peut ne pas faire grande différence puisque qu'une interaction très faible suffit largement pour tuer quelqu'un. En effet, dans les fonderies, on reporte dans le monde quelques dizaines accidents par an, surtout dans l'industrie de l'aluminium. Les pompiers redoutent également ce phénomène. Mais il ne s'agit pas en général d'explosions telles qu'elles sont décrites par la suite. De la même manière, des interactions sont rencontrées en vulcanologie et sont à l'origine de certaines des éruptions volcaniques.

L'exemple le plus célèbre d'explosion de vapeur est cependant sans consteste celle qui est supposée avoir détruit le réacteur nucléaire de Chernobyl (il subsiste quelques incertitudes sur la nature de l'explosion).

Le liquide volatil se vaporise au contact du liquide chaud. Il suffit alors qu'une petite perturbation intervienne dans le mélange des deux liquides pour qu'au moins l'un des deux se fragmente finement (quelques dizaines de microns), augmentant la surface d'échange entre les deux liquides et par suite le taux de vaporisation. En pratique, les explosions ont lieu dans le cas ou le fluide chaud est dispersé dans le fluide froid. Dans ce cas, le phénomène se propage à la vitesse du son et est donc très rapide (quelques millisecondes). La situation inverse où le fluide froid est dispersé dans le fluide chaud mène plutôt une interaction, potentiellement dangereuse, mais sans le même caractère explosif. Les situations où les deux fluides sont stratifiés et donc non dispersés, peuvent également mener à des explosions mais d'ampleurs nettement moins fortes. Expérimentalement, les situations stratifiées ont mené à des intensités d'explosion de quelques dizaines de bars au maximum (sur des échelles cependant très réduites), alors que des pressurisations de l'ordre de 1000 bars ont été enregistrées dans les expériences KROTOS menées au centre JRC d'ISPRA (voir par exemple Nuclear Engineering and Design 155 ( 1995) 391 -403).

Si la fragmentation du fluide chaud est plus rapide que le relâchement de la pression (via un déplacement des fluides), la vaporisation du fluide volatil induit une compression locale des fluides. Cette compression locale participe à une montée en pression globale. Dans sa phase ultime, le phénomène s'apparente à une détonation chimique ainsi que l'ont démontré Board et Hall (Nature 254 (5498), 1975). Le front de détonation (onde de choc de quelques centaines de bars) pulvérise le combustible chaud, cette fragmentation contribuant elle-même à l'onde de choc. La surpressurisation est ensuite suivie d'une importante détente engendrant une très grande vaporisation au cours de laquelle l'énergie interne se transforme en travail. C'est en général cette phase de détente qui est la plus destructrice pour les structures.

En pratique cependant, l'extension des théories classiques de détonation ne peut se faire qu'au prix d'approximations non physiques (instantanéité des phénomènes de fragmentation et / ou de transfert thermiques) et ne permettent pas d'évaluations réalistes du phénomène. On utilise également souvent des modèles simples thermodynamiques (Hicks et Menzies, Hall). Ceux-ci sont également en pratique largement insuffisants. En effet, l'intensité du phénomène dépend de multiples paramètres et surtout de la configuration du mélange au moment de l'initiation de l'explosion. Le taux de vapeur présent dans le mélange est en particulier très déterminant. Des processus chimiques tels de l'oxydation peuvent également augmenter considérablement l'énergie mécanique délivrée par l'explosion. C'est le cas en particulier en présence de métaux tels que l'aluminium ou le zirconium dont l'oxydation est très exothermique.

Ainsi, actuellement, ce phénomène est modélisé via des logiciels de simulation numérique multiphasique, multidimensionnel. Ces outils sont principalement utilisés dans l'industrie nucléaire. En France, le seul logiciel de ce type existant est le code MC3D, issu d'une collaboration entre le CEA et l'IRSN (pour faire simple). Ces outils mettent en oeuvre une modélisation très complexe devant gérer des conditions physiques très particulières (des milliers de degrés, des centaines de bars) avec des phénomènes multiples et très complexes. Le point le plus critique actuellement est sans doute la modélisation de la phase initiale de mélange entre les fluides. Ainsi, aussi sophistiqués que soient ces outils, il existe de nombreuses zones d'incertitudes tant en ce qui concerne la physique elle-même que la modélisation (la description numérique de la physique).


[modifier] A venir :

- Description plus fine du phénomène - Les logiciels de calcul.


[modifier] Voir aussi

Autres langues