Discussion Utilisateur:Tize

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, et plus particulièrement en analyse complexe, le théorème de Weierstrass-Casorati décrit une propriété topologique des voisinages d'une singularité essentielle d'une fonction holomorphe. Il est nommé ainsi en l'honneur des mathématiciens Karl Weierstrass et Felice Casorati.

Sommaire

[modifier] Singularités des fonctions holomorphes

En analyse complexe, une singularité d'une fonction holomorphe est un point où la fonction n'est pas bien définie. On peut classer ces singularités en plusieurs catégories, si un point a appartient à un ouvert \mathcal{U} de \mathbb{C} et une fonction holomorphe f est définie sur \mathcal{U}\backslash\{a\} alors on dit que a est :

Il existe un quatrième type de singularité : le point de branchement (ou point de ramification) qui concerne les les fonctions complexes multiformes telles que la fonction racine n-ième ou la fonction logarithme complexe.

[modifier] Prolongement pour les singularités apparentes

Une des principales conséquences de la formule intégrale de Cauchy conduit à écrire f(z) = \sum _{n=0}^\infty c_n(z-a)^n avec c_n= {1 \over 2\pi i} \int_\gamma {f(\xi) \over (\xi-a)^{n+1}}\, d\xi

[modifier] Énoncé et preuve du théorème de Weierstrass-Casorati

Théorème de Weierstrass-Casorati — Soit f une fonction holomorphe sur un disque D(a,r) épointé (c'est-à-dire privé de son centre) avec une singularité essentielle en a (c'est-à-dire que f n'est pas bornée sur un voisinage de a sans pour autant que \lim_{z\to a} |f(z)| existe).

Alors, pour tout k inclus dans ]0,r[, l'ensemble f(D(a,k)\backslash\{a\}) est dense dans \Complex.

[modifier] Remarques - Grand théorème de Picard

Ainsi pour tout k inclus dans ]0,r[ et pour tout c appartenant à \Complex, il existe une suite (zj) de D(a,k)\backslash\{a\} telle que f(zj) tend vers c.

Il existe un autre type de singularité à ne pas confondre avec la singularité essentielle, le point de branchement: il existe alors dans le développement autour de a soit un terme logarithmique soit des puissances non entières.

Le grand théorème de Picard a complété le théorème de Weierstrass-Casorati en précisant qu'une telle application prend une infinité de fois toutes les valeurs de \mathbb{C} sauf peut être une. La démonstration du théorème de Picard est bien plus difficile que celle du théorème de Weierstrass-Casorati.

[modifier] Exemples

Tracé du module de la fonction . La fonction possède une singularité essentielle en 0. On peut observer que même en étant très près de 0 le module peut prendre toutes les valeurs positives excepté 0
Tracé du module de la fonction z \mapsto \exp\left(z^{-2}\right). La fonction possède une singularité essentielle en 0. On peut observer que même en étant très près de 0 le module peut prendre toutes les valeurs positives excepté 0
  • La fonction g:z\mapsto 1/z définie sur \mathbb{C}^* possède une singularité qui n'est pas essentielle en 0 (c'est en fait un pôle d'ordre 1). On peut remarquer que \left|g(z)\right|\to\infty quand z\to 0 et la fonction g ne vérifie donc pas le théorème de Weierstrass-Casorati.
  • La fonction définie pour tout z \in \mathbb{C}^* par :
f(z)=\exp\left(\frac{1}{z^2}\right)=1+\frac{1}{z^2}+\frac{1}{2z^4}+\frac{1}{6z^6}+\frac{1}{24z^8}+...

possède une singularité essentielle en 0.

En posant z = x + iy on a \left|f(z)\right|=\exp\left(\frac{x^2-y^2}{(x^2+y^2)^2}\right) les courbes de niveaux de \left|f(z)\right| vérifient donc des équations du type x^2-y^2=c\left(x^2+y^2\right)^2c est une constante, les courbes de niveaux de \left|f(z)\right| sont donc des lemniscates de Bernoulli.

[modifier] Une application

L'utilisation du théorème de Weierstrass-Casorati est l'une des méthodes qui permet de montrer que les seules automorphismes biholomorphes de \mathbb{C} sont des applications f du type f(z) = az + b avec a\neq 0.

[modifier] Voir aussi

[modifier] Référence

  • Serge Lang, Complex Analysis, Springer, coll. « Graduate Texts in Mathematics », New York, janvier 1999, 485 p. (ISBN 0-387-98592-1)

[modifier] Lien externe

  • [1] Cours de Ernst Hairer de l'université de Genève au format PDF.

de:Satz von Weierstraß-Casorati en:Weierstrass–Casorati theorem fa:قضیه وایرشتراس-کاسوراتی he:משפט קסורטי-ויירשטראס it:Teorema di Casorati-Weierstrass ja:カゾラーティ・ワイエルシュトラスの定理