Théorie VSEPR

Un article de Wikipédia, l'encyclopédie libre.

La théorie VSEPR, acronyme anglophone pour Valence Shell Electronic Pairs Repulsion (en français RPECV pour Répulsion des Paires Électroniques de la Couche de Valence est une méthode destinée à prédire la géométrie des molécules en se basant sur la théorie de la répulsion des électrons de la couche de valence. Elle est aussi connue sous le nom de théorie de Gillespie.

Sommaire

[modifier] Origines

Ce sont les Britanniques N. Sigdwick et H. Powell qui les premiers ont émis cette idée, sur laquelle s'est fondé le chimiste canadien R.J Gillespie de l'université Mc Master Hamilton en Ontario, qui est le véritable instaurateur de cette théorie. La méthode VSEPR s'inscrit dans la poursuite des idées sur les liaisons chimiques de G.N Lewis (1916).

[modifier] Prérequis et supposition

La méthode VSEPR est fondée sur un certain nombre de suppositions, notamment concernant la nature des liaisons entre atomes :

  • Les atomes dans une molécule sont liés par des paires d'électrons.
  • Deux atomes peuvent être liés par plus d'une paire d'électrons. On parle alors de liaisons multiples.
  • Certains atomes peuvent aussi posséder des paires d'électrons qui ne sont pas impliqués dans une liaison. On parle de doublets non liants.
  • Les électrons composant ces doublets liants ou non liants exercent les uns sur les autres des forces électriques répulsives. Les doublets sont donc disposés autour de chaque atome de façon à minimiser les valeurs de ces forces.
  • Les doublets non liants occupent plus de place que les doublets liants.
  • Les liaisons multiples prennent plus de place que les liaisons simples.

[modifier] Notations

Dans la suite de cet article, et suivant les usages de la méthode VSEPR, on notera l'atome central de la molécule étudié A.

Les doublets liants, c'est-à-dire les paires d'électrons liant l'atome central A aux autres atomes de la molécule seront notés X. Le nombre de doublets liants sera noté n.

N.B: En ce qui concerne la géométrie de la molécule une liaison multiple est assimilable à une liaison simple c'est à dire que n est plus simplement égal au nombre d'atomes liés à A.

Les doublets non liants, c'est-à-dire les paires d'électrons appartenant à l'atome central A et n'étant pas impliqués dans des liaisons seront notés E. Le nombre de doublets non liants sera noté m.

Les molécules simples, dont la géométrie est facilement définissable grâce à la méthode VSEPR sont donc de la forme : AXnEm

[modifier] Figures de répulsion

[modifier] Méthode AXE

La méthode AXE, dont nous avons vu la notation, permet de définir les figures suivantes :

Type Géométrie Exemples
AX1E* (AX1) Linéaire HF
AX2E0 (AX2) Linéaire BeCl2, HgCl2
AX2E1 Coudée SO2, O3
AX2E2 Coudée H2O
AX2E3 Linéaire XeF2
AX3E0 (AX3) Triangle (plan) BF3
AX3E1 Pyramide trigonale NH3
AX3E2 Forme en T ClF3, BrF3
AX4E0 (AX4) Tétraèdre CH4
AX4E1 Balançoire SF4
AX4E2 Carré (plan) XeF4
AX5E0 (AX5) Bipyramide trigonale PCl5
AX5E1 Pyramide à base carrée BrF5
AX6E0 (AX6) Octaèdre SF6
AX6E1 Pyramide pentagonale XeF6
AX7E0 (AX7) Bipyramide pentagonale IF7

[modifier] Géométrie

[modifier] 2D

Nombre de
liaison
Géométrie de base
0 paires d'électrons
non-liants
1 paire d'électrons
non-liants
2 paires d'électrons
non-liants
3 paires d'électrons
non-liants
4 paires d'électrons
non-liants
1
linéaire
       
2
linéaire

linéaire
     
3
triangle (plan)

coudée

linéaire
   
4
tétraèdre

pyramide trigonale

coudée

linéaire
 
5
bipyramide trigonale

balançoire (seesaw)

forme en T

linéaire
 
6
octaèdre

pyramide à
base carrée

carré (plan)
   
7
bipyramide pentagonale

pyramide trigonale
     

[modifier] 3D

Nombre de
liaison
Géométrie de base
0 paires d'électrons
non-liants
1 paire d'électrons
non-liants
2 paires d'électrons
non-liants
3 paires d'électrons
non-liants
4 paires d'électrons
non-liants
1
linéaire
       
2
linéaire

linéaire
     
3
triangle (plan)

coudée

linéaire
   
4
tétraèdre

pyramide trigonale

coudée

linéaire
 
5
bipyramide trigonale

balançoire

forme en T

linéaire
 
6
octaèdre

pyramide à
base carrée

carré (plan)
   
7
pyramide pentagonale

bipyramide pentagonale
     

[modifier] Améliorations du modèle

[modifier] Longueur des liaisons

Jusqu'ici, nous avons considéré que les liaisons entre atomes étaient toutes de la même longueur, approximation grossière et bien éloignée de la réalité. En effet, les longueurs des liaisons varient en fonction des atomes impliqués et de la typologie de la liaison (liaison simple, liaison double, liaison triple, liaison aromatique...)

Il est possible de déterminer la distance séparant deux atomes de façon expérimentale, bien que celle-ci ne soit pas constante et dépende du milieu. On peut cependant définir une valeur moyenne.

[modifier] Méthode avec les rayons de covalence

En première approximation, on pourra assimiler les atomes à des sphères dont le rayon est égal au rayon de covalence. La longueur d'une liaison sera alors donnée par la somme des rayons de covalence des atomes impliqués :

 D = Ra + Rb 

Avec, Ra le rayon de covalence du premier atome, et Rb le rayon de covalence du second atome impliqué.

[modifier] Méthode tenant compte de la différence d'électronégativité

Les atomes ayant chacun une électronégativité différente, cela influe aussi sur la longueur des liaisons, et plus particulièrement une forte différence d'électronégativité implique un raccourcissement important de la liaison. On peut donc établir la formule (empirique) suivante :

 D = Ra + Rb − 9 *  | δE | 

Avec Ra le rayon de covalence du premier atome (en picomètres), et Rb le rayon de covalence du second atome impliqué (en picomètres), δE la différence d'électronégativité entre les deux atomes (suivant l'échelle de Pauling).

[modifier] Influence des liaisons multiples

Les formules ci-dessus permettent de calculer avec un taux d'erreur relativement faible les longueurs des liaisons simples. A partir de ces mesures, on peut facilement obtenir celles des liaisons multiples.

Une liaison double fait en moyenne, 86% de la longueur d'une liaison simple. Une liaison triple fait en moyenne, 78% de la longueur d'une liaison simple.

Les liaisons aromatiques telles que celles présentes dans la molécule de benzène, par exemple, sont intermédiaires entre des liaisons simples et des liaisons doubles :

 Rayon de covalence du carbone : 77 pm
 Longueur d'une liaison carbone-carbone simple (calculée) : 154 pm
 Longueur d'une liaison carbone-carbone double (calculée) : 133 pm 
 Longueur des liaisons carbone-carbone dans la molécule de benzène (expérimentales) : 140 pm

[modifier] Limites du modèle

Même si la méthode VSEPR permet de prévoir de façon satisfaisant la géométrie de molécules simples pour lesquelles le choix d'un atome central est aisé, elle reste plus difficile à appliquer et insuffisante lorsqu'il s'agit de prévoir la géométrie de molécules plus complexes. Par exemple, tous les atomes de la molécule d'éthylène (CH2=CH2) sont situés dans un même plan, ce qui n'est pas possible de prévoir avec le modèle.

De plus, les molécules, les atomes, les électrons, les nucléons ne sont pas des structures fixes dans le temps et dans l'espace. Leurs positions relatives varient au cours du temps et suivant le milieu. Toute prédiction de positions est donc à relativiser.

[modifier] Liens externes