Théorème d'Iwaniec et Richert

Un article de Wikipédia, l'encyclopédie libre.

Le théorème d'Iwaniec et Richert peut s'énoncer ainsi :

Il existe une infinité d'entiers n tel que :

 n^2 + 1 ~

soit un 2-nombre presque premier (c’est-à-dire un nombre semi-premier) .


Ce résultat a été obtenu par Iwaniec en 1978. Il fait suite à un article de Levin de 1960, dans lequel ce dernier montre que la suite (n2 + 1)n = 1,...,N contient au moins


\frac {aN}{\ln N} + O \left ( \frac {N \ln \ln N}{(\ln N)^{3/2}} \right )


éléments ayant au plus cinq facteurs premiers, où a > 0.


En 1974, Halberstam et Richert, dans leur ouvrage Sieve methods, ont obtenu le résultat effectif suivant. Soit a un entier qui ne soit pas l'opposé d'un carré parfait, et soient 1 < y \leq x des nombres réels. Alors, le nombre d'entiers n vérifiant x-y <n \leq x^2 et tels que n2 + a soit un nombre premier est majoré par :


2 \prod_{p > 2, \, p \mid a} \left ( 1 - \frac {(-a/p)}{p-1} \right ) \frac {y}{\ln y} \times \left \{ 1 + O_{a} \left ( \frac {\ln \ln 3y}{\ln y} \right ) \right \},


( − a / p) désigne le symbole de Legendre-Jacobi-Kronecker.