Utilisateur:Romary/formule Tex

Un article de Wikipédia, l'encyclopédie libre.

	h = \frac{w}{K}

\begin{matrix}& G & = & {\rm valeurs\ maximum\ -\  valeurs\ minimum\ }\end{matrix}
\bar S=\frac{\Delta I}{\Delta G}\,\!
K= 1 + \frac{10 \log(N)}{3}
K = \sqrt{N}\,
 S= 2 \pi R L\,
 \Phi= - \lambda 2 \pi R L \frac{dT}{dR}\,
\frac{dR}{R}= - \frac{2 \pi \lambda L dT}{\Phi}\,
\int_{R_1}^{R} \frac{dR}{R}= - \frac{2 \pi \lambda L }{\Phi} \int_{T_1}^{T} dT\,
\ln \frac{R}{R_1}= \frac{2 \pi \lambda L }{\Phi} (T_1-T)\,
\ T= T_1 - \frac{\Phi}{2 \pi \lambda L } \ln \frac{R}{R_1}\,
\ T_1-T_2= \frac{\Phi}{2 \pi \lambda_A L } \ln \frac{R_2}{R_1}\,
\ T_1-T_3= \frac{\Phi}{2 \pi L } \left ( \frac {\ln \frac {R_2}{R_1} }{\lambda_A} + \frac {\ln \frac {R_3}{R_2} }{\lambda_B}\right )\,
\ R_{thA}= \frac {\ln \frac {R_2}{R_1} }{\lambda_A}\,
\ R_{thB}= \frac {\ln \frac {R_3}{R_2} }{\lambda_A}\,
\ R_{thT}= R_{thA} + R_{thB}\,



T_1- T_2= \frac{e_X}{\lambda_X S} \Phi\,
R_X= \frac{e_X}{\lambda_X}\,
\Phi_A= \frac{T_1- T_2}{R_A} S\,
\Phi_B= \frac{T_1- T_2}{R_B} S\,
\Phi_C= \frac{T_1- T_2}{R_C} S\,
\Phi= (T_1- T_2) S (\frac{1}{R_A}+ \frac{1}{R_B}+ \frac{1}{R_C})(\,
R=\frac{1}{R_A}+ \frac{1}{R_B}+ \frac{1}{R_C}\,
\Phi= (T_1- T_2) S (\frac{1}{R})\,
\varphi= (T_1- T_2) S (\frac{1}{R})\,
I= I_1+ I_2+I_3\,
I_X= RI_X\,
I= (\frac{1}{R_1}+ \frac{1}{R_2}+ \frac{1}{R_3}) \Delta U\,
\varphi= (\frac{1}{R_{th1}}+ \frac{1}{R_{th2}}+ \frac{1}{R_{th3}}) \Delta T\,



T_1- T_2= \frac{e_A}{\lambda_A} \varphi\,
T_1- T_4= (T_1-T_2)+(T_2-T_3)+(T_3+T_4)\,
T_1- T_4= (\frac{e_A}{\lambda_A}+ \frac{e_B}{\lambda_B}+ \frac{e_C}{\lambda_C}) \varphi\,
T_1- T_4= (R_{thA}+ R_{thB}+ R_{thC}) \varphi\,
T= T_1- \frac{e_X}{\lambda_X}\varphi\,
C_{th}= \frac{1}{R_{th}}= \frac{\lambda_A}{e_A}+ \frac{\lambda_B}{e_B}+ \frac{\lambda_C}{e_C}\,
\frac{dT}{dx}= {\rm Constante}\,
\Rightarrow d\Phi= - \lambda S \frac{dT}{dx}\,
\Rightarrow \Phi= - \lambda S \frac{dT}{dR}\,
\int_{T}^{T_1}\, dT\ = - \int_{x}^{x_1} \frac{\Phi}{\lambda S} dS\,
T-T_1= - \frac{\Phi}{\lambda S} (x-x_1)\,
\Rightarrow T= T-_1 - - \frac{\Phi}{\lambda S} (x-x_1)\,
\int_{T_2}^{T_1}\, dT\ = - \int_{x_2}^{x_1} \frac{\Phi}{\lambda S} dS\,
 e= x_2-x_1\,
\Rightarrow \Phi = \frac{\lambda S}{e} (T_1-T_2)\,
\varphi= \frac{\Phi}{S}\,
\varphi= \frac{\lambda}{e} (T_1-T_2)\,
(U_1-U_2)= RI\,
 (T_1-T_2)= \frac{e}{\lambda} \varphi\,
(U_1-U_2) \leftrightarrow (T_1-T_2),
 I \leftrightarrow \varphi,
 R \leftrightarrow R_{thc}= \frac{e}{\lambda}\,
 \lambda= \lambda_0 e^{0,08H}\,
 \lambda= \lambda_0 (1+ a\Theta)\,
dQ_x= -  \lambda_x\ \frac{\delta T}{\delta x} dS_x dt\,
 d\Phi= \frac{dQ_x}{dt}= - \lambda_x \frac{\delta T}{\delta x} dS_x\,
\varphi= \frac{d \Phi}{d S_x}\,
\varphi= -  \lambda \frac{\delta T}{\delta x}\,
\Phi= KS(T_A-T_B)\,
(U_A-U_B)= RI\,
(T_A-T_B)= \frac{1}{KS} \cdot\ \Phi\,
\Phi= \frac{dQ}{dt}\,
\varphi= \frac{d\Phi}{dS}= \frac{1}{S} \frac{dQ}{dt}\,
\varphi= \frac{\Phi}{S}\,
\delta\ Q_A\ \left( \frac{1}{T_A}- \frac{1}{T_B}\right)>0\,
\delta\ Q\ = m \cdot\ C_p \cdot\ dT\,
\Rightarrow  m_A \cdot\ C_{pA} \cdot\ dT_A \left( \frac{1}{T_A}- \frac{1}{T_B}\right)>0\,
\delta\ Q_B\ \left( \frac{1}{T_B}- \frac{1}{T_A}\right)>0\,
\Rightarrow  m_B \cdot\ C_{pB} \cdot\ dT_B \left( \frac{1}{T_B}- \frac{1}{T_A}\right)>0\,
 T_A> T_B\,
\left\{\begin{matrix} dT_A< 0 \Rightarrow \delta\ Q_A< 0,  \\ dT_B> 0\Rightarrow \delta\ Q_B> 0,  \end{matrix}\right.\,
dS= dS_A +dS_B\,
dS>0\,
\Rightarrow dS= \frac{\delta\ Q_A}{T_A}+ \frac{\delta\ Q_B}{T_B}\,
dS= \frac{\delta\ Q}{T}\,
\Rightarrow \delta\ Q\ =0 =Q_A +Q_B\,
\Rightarrow Q_A = -Q_B\,
\ \delta\ Q_A = - \delta\ Q_B\,
dU=0\,
\delta\ L\ =0\,
dU=\delta\ Q\ +\delta\ L\,
 H  = 100 - r\,
\begin{matrix}
H_M & = & 0,102 \cdot \frac{4F}{\pi \cdot d^2}
\end{matrix}

avec

 {\rm Constante} = \frac{1}{g}=\frac{1}{9,8066}=0,102
d=\frac{d_2+d_1}{2}
J= \bar v - V
\begin{matrix}
& \bar v & = & {\rm moyenne\ arithm\acute etique\ d'un\ grand\ nombre\ de\ mesures\ }\end{matrix}
\begin{matrix}
& V & = & {\rm valeur\ vrai\ (ou\ conventionnellement\ vrai)\ }\end{matrix}
Umax = 100,2V
Umin = 99,7V
\begin{matrix}
& F &= & +/- &\frac {100.2-99,7}{2} 
 = & +/-  &\frac{0,5}{2}
 = & +/-  &0.25 V
\end{matrix}
F_{max}=+\frac{V_{min}+V_{max}}{2}
F_{min}=-\frac{V_{min}+V_{max}}{2}
\begin{matrix}
& \bar d & = & \sqrt{{\rm (\sum \cdot \ ( \frac{Ox_i}{n} )^2)} + {\rm (\sum \cdot \ ( \frac{Oy_i}{n} )^2)} {\rm  }} \\
& & = & \sqrt{{\rm ( {\overline {Ox}})^2} + {\rm  ( {\overline {Oy}})^2}} 
\end{matrix}

a2n 2^{(2n-1)} \,\! a(2n − 1)

d=k\sqrt[3]{t}\,\!
C=\frac{2\pi r^3}{3t}\,\!
\begin{matrix}
& H_B & = & {\rm Constante} \cdot \frac{\rm ( Charge\ de\ l'appareil ) }{\rm (Aire\ de\ l'empreinte) } \\
& & = & 0,102 \cdot \frac{2F}{\pi \cdot D(D-\sqrt{D^2-d^2})}
\end{matrix}

avec

 {\rm Constante} = \frac{1}{g}=\frac{1}{9,8066}=0,102
d=\frac{d_2+d_1}{2}
\begin{matrix}
& H_V & = & {\rm Constante} \cdot \frac{\rm ( Charge\ de\ l'essai ) }{\rm (Aire\ de\ l'empreinte) } \\
\\
& & = & 0,102 \cdot  \frac{2F \cdot \sin(\frac{136^\circ}{2})}{d^2}\\
\\
& & = & 0,189 \cdot  \frac{2F}{d^2}\\
\end{matrix}\\
R_e=\frac{F}{S}\,\!
P=\frac{F}{S}\,\!
S=\frac{dI}{dG}\,\!
S=\frac{dI}{dG}=\operatorname{Arctan} \  \varphi  \,\!
\begin{matrix}
& I & = & {\rm indication\ donn\acute ee\ par\ l'essai }\end{matrix}
\begin{matrix}
& G & = & {\rm quantit\acute e\ de\ grandeur\ \grave a\ mesurer }\end{matrix}
\bar S=\frac{\Delta I}{\Delta G}\,\!
S=\frac{10 mm}{5 cl}=\frac{2 mm}{cl}\,\!
\begin{matrix}
& m & = & \frac{\rm ( 1 ) }{ (96500) }\cdot \frac{\rm (A)}{ (n)}\cdot & {\rm I}\cdot & {\rm t}
\end{matrix}
\begin{matrix}
& K & = & \frac{\rm ( Surface\ de\ la\ cathode ) }{ (Surface\ de\ l'anode) }
\end{matrix}
\Delta E_c=m\cdot g\cdot h
K=m\cdot g\cdot h - m\cdot g\cdot h'