Utilisateur:Romary/Formules chimiques en Tex

Un article de Wikipédia, l'encyclopédie libre.

[modifier] solubilité

\overrightarrow{\rm{\leftarrow }}{\qquad\qquad\qquad}

 \mathrm{AgCl} {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad}  \mathrm{Ag^+ Cl^-}

 AgCl {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad}  Ag^+ + Cl^-
Espèce chimique AgCl Ag+ Cl-
t=0 s 0 0,1
Équilibre 0 s s+0,1

K_s = \left[ Ag^+ \right]  .  \left[ Cl^- \right]

K_s = s'.(s+0,1) = 1,8 . 10^{-10}\,

K_s = 0,1 s = 1,8 . 10^{-10}\,

s = 1,8.10^{-9} mol.L^{-1}\,

1,8.10^{-9} mol.L^{-1}\,<< 0.1


K_s = \left[ Ag^+ \right]  .  \left[ Cl^- \right]

K_s = s.s = s^2 = 1,8 . 10^{-10}\,

s = 1,35.10^{-5} mol.L^{-1}\,

 AgCl {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad}  Ag^+ + Cl^-
Espèce chimique AgCl Ag+ Cl-
t=0 s 0 0
Équilibre 0 s s


X_{\alpha} Y_{\beta} (solide) {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad} \alpha X^{\beta+} (aqueux)+\beta Y^{\alpha-} (aqueux)

X_{\alpha} Y_{\beta}  {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad} \alpha X^{\beta+} +\beta Y^{\alpha-}
Espèce chimique XαYβ Xβ Yα
t=0 s 0 0
Équilibre 0 αs βs

K_s = \left[ X^{\beta+} \right]^{\alpha}  .  \left[ Y^{\alpha-} \right]^{\beta}

K_s = (\alpha . s)^{\alpha}.(\beta . s)^{\beta}\,

K_s = (\alpha)^{\alpha}.(\beta . s)^{\beta}.s^{\alpha+\beta}\,

 Ag_2CO_3 {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad} 2 Ag^+ + CO_3^{2-}

 Ag_2CO_3 {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad} 2 Ag^+ + CO_3^{2-}
Espèce chimique Ag2CO3 Ag+ CO32-
t=0 s 0 0
Équilibre 0 2s s

K_s = \left[ Ag^+ \right]^2  .  \left[ CO_3^{2-} \right] = 8,1.10^{-18}

K_s = (2s)^2.(s) = 4s^3 = 8,1.10-{-18} \,

K_s = \sqrt[3]{8,1.10-{18}}

s = 1,26.10^{-6} mol.l^{-1}\,

M = 167,9 g\,

s_m = 1,26.10^{-6} \times 167,9 = 2,1.10^{-4} g.L^{-1}

CuBr {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad} Cu^+ + Br^-

CuBr {\qquad}\overrightarrow{\rm{\leftarrow }}{\qquad} Cu^+ + Br^-
Espèce chimique CuBr Cu+ Br-
t=0 s 0 0
Équilibre 0 s s

K_s = \left[ Cu^+ \right]  .  \left[ Br^- \right]

K_s = s.s = s^2 = 5,3 . 10^{-9}\,

s = \sqrt{5,3.10^{-9}} = 7,2.10^{-5} mol.L^{-1}

M_{CuBr} = 63,55 + 79,90 = 143,45 g \,

s_m = 1,03.10^{-2} g.L^{-1} \,

K=\frac{a_{X^{\beta+} (aqueux)}^{\alpha}.a_{Y^{\alpha-} (aqueux)}^{\beta}}{a_{X_{\alpha} Y_{\beta} (solide)}}


a_{X_{\alpha} Y_{\beta} (solide)} = 1

a_{X^{\beta+} (aqueux)} = \left[ X^{\beta+} \right] ^{\alpha}

a_{Y^{\alpha-} (aqueux)}^{\beta} = \left[ Y^{\alpha-} \right] ^{\beta}

K_s = \left[ X^{\beta+} \right] ^{\alpha} .  \left[ Y^{\alpha-} \right] ^{\beta}

[modifier] autre

\begin{matrix} & {}_{\rm{\rightarrow }} & \\ ZnS +  Fe_2(SO_4)_3 & \overrightarrow{\qquad\qquad\qquad} & ZnSO_4 + 2FeSO_4 + S\ (solide)\ \\\end{matrix}
\begin{matrix}
& V & = & {\rm valeur\ vrai\ (ou\ conventionnellement\ vrai)\ }\end{matrix}
\begin{matrix} & {\rm air\ (source\ de\ diazote)} + {\rm dihydrog\grave{e}ne} + {\rm eau} & \overrightarrow{\qquad\qquad} & {\rm ammoniac} + {\rm dioxyde\ de\ carbone} \end{matrix}
\begin{matrix} & \\ CH_4 + N_2 + H_2O & \overrightarrow{\qquad} & NH_3 + 3H_2   \\\end{matrix}
\begin{matrix} & \\ CH_4 + H_2O & \overrightarrow{\qquad} & CO + 3H_2   \\\end{matrix}
\begin{matrix} & \\ CO + H_2O & \overrightarrow{\qquad} & CO_2 + H_2   \\\end{matrix}
\begin{matrix} & \\ CH_4 + H_2O & \overrightarrow{\qquad} & CO + 3H_2   \\\end{matrix}
\begin{matrix} & \\ N_2 + 3H_2 & \overrightarrow{\qquad} & 2NH_3 & {\rm \Delta\ H^0_{298}} =  - 92,2  {\rm KJ/mole} \\\end{matrix}


\begin{matrix} & {}_{\rm{texte\, \acute{e} crit\, au\, dessus}} & \\ H_2O+OH^- & \overrightarrow{\qquad\qquad\qquad\qquad} & NO_3 \\\end{matrix}
\begin{matrix} & \\ 2H_2O (liquide)& \overrightarrow{\qquad} & O_2 (gaz) + 4H^+(aqueux) + 4e^-\   \\\end{matrix}
\begin{matrix} & \\ 4H_2O (liquide) + 4e^-\overrightarrow{\qquad} & 2H_2 (gaz) + 4OH^-(aqueux) \   \\\end{matrix}
\begin{matrix} & \\ 2H_2O (liquide)\overrightarrow{\qquad} & 2H_2 (gaz) + O_2(gaz) \   \\\end{matrix}


\begin{matrix} & \\ 2H_2 & \overrightarrow{\qquad} & 2H^+ + 2e^-\   \\\end{matrix}
\begin{matrix} & \\ O_2+4H^++4e^-& \overrightarrow{\qquad} & 2H_2O\   \\\end{matrix}
\begin{matrix} & \\ CH_3OH& \overrightarrow{\qquad} & CO+2H_2\   \\\end{matrix}
\begin{matrix} & \\ 2CO+O_2& \overrightarrow{\qquad} & 2CO_2\   \\\end{matrix}
\begin{matrix} & \\ 2H_2+ O_2 \overrightarrow{\qquad} & 2H_2O\   \\\end{matrix}


\begin{matrix} & \\ Al_2O_3 & \overrightarrow{\qquad} & 2Al^{3+} + 3O^{2-} \\\end{matrix}
\begin{matrix} & \\ 2Al^{3+}+ 6e^- & \overrightarrow{\qquad} & 2Al^0\ m\acute{e}tal  \\\end{matrix}
\begin{matrix} & \\ 2Al^0 & \overrightarrow{\qquad} & 2Al^{3+} + 3e^-\   \\\end{matrix}


\begin{matrix} & \\ 6O^{2-}+ 3C & \overrightarrow{\qquad} & 3CO_2 +6e^-  \ m\acute{e}tal  \\\end{matrix}
\begin{matrix} & \\ Al_2O_3 (solution) + 3C (solide) & \overrightarrow{\qquad} & 4Al^0 (liquide) +3 CO_2 (gaz)  \ m\acute{e}tal  \\\end{matrix}
\begin{matrix} & \\ Al^0 (solution) + 3 CO_2 (gaz) & \overrightarrow{\qquad} & Al_2O_3 (solution) +3 CO (gaz)  \ m\acute{e}tal  \\\end{matrix}
\begin{matrix} & \\ 2Al^0 (m\acute{e}tal) + 3 O_2 (gaz) & \overrightarrow{\qquad} & Al_2O_3  \\\end{matrix}
\begin{matrix} & \\ 4Al^0 + 6 H_2O + 3O_2 & \overrightarrow{\qquad} & Al(OH)_3  \\\end{matrix}


\begin{matrix} & \\ 4F^- + Al_2O_2F_4^- + C & \overrightarrow{\qquad} & 4 e^- + 2AlF_4^- + CO_2  \\\end{matrix}
\begin{matrix} & \\ 4F^- + Al_2O_2F_4^- + 2C & \overrightarrow{\qquad} & 4 e^- + 2AlF_4^- + 2 CO  \\\end{matrix}
\begin{matrix} & \\ AlF_4^- + 3e^- & \overrightarrow{\qquad} & 2Al (liquide) + 4F^- \\\end{matrix}
\begin{matrix} & \\ Na^+ + 3C & \overrightarrow{\qquad} & Na \\\end{matrix}
\begin{matrix} & \\ 4Al + 3C \overrightarrow{\qquad} & Al_4C_3 \\\end{matrix}
\begin{matrix} & \\ 3O_2 + 6H_2O + 12e^- & \overrightarrow{\qquad} & 12OH^-  \\\end{matrix}
\begin{matrix} & \\ 6H^+ 6e^- & \overrightarrow{\qquad} & 3H_2  \\\end{matrix}
\begin{matrix} & \\ 4Fe + 3O_2 & \overrightarrow{\qquad} & 2FeO_3  \\\end{matrix}
\begin{matrix} & \\ 2Fe  & \overrightarrow{\qquad} & 2Fe^{3+} + 6e^- \\\end{matrix}
\begin{matrix} & \\ 3O_2 +12e^- & \overrightarrow{\qquad} &6O^{2-} \\\end{matrix}
\begin{matrix} & \\ 6H_3O^++6e^-  & \overrightarrow{\qquad} & 6H_2O + 3H_2 \\\end{matrix}
\begin{matrix} & \\ C + 1/2 O_2 & \overrightarrow{\qquad} & CO \   \\\end{matrix}
\begin{matrix} & \\ C +  O_2 & \overrightarrow{\qquad} & CO_2 \   \\\end{matrix}
\begin{matrix} & \\ C +  CO_2 & \overrightarrow{\qquad} & 2CO \   \\\end{matrix}
\begin{matrix} & \\ Fe_2O_3 +  CO & \overrightarrow{\qquad} & 2Fe + 3CO_2 \   \\\end{matrix}
\begin{matrix} & \\ Fe_2O_3 \overrightarrow{\qquad} & Fe_3O_4 \overrightarrow{\qquad} & FeO \overrightarrow{\qquad} & Fe \   \\\end{matrix}
\begin{matrix} & \\ Fe_2O_3 +  CO & \overrightarrow{\qquad} & Fe_3O_4 + CO_2 \   \\\end{matrix}
\begin{matrix} & \\ Fe_3O_4 +  CO & \overrightarrow{\qquad} & FeO + CO_2 \   \\\end{matrix}
\begin{matrix} & \\ FeO +  CO & \overrightarrow{\qquad} & Fe + CO_2 \   \\\end{matrix}


\begin{matrix} & \\ ZnS + 3/2 O_2 & \overrightarrow{\qquad} & ZnO + SO_2 & {\rm \Delta\ H} =  - 445\  {\rm  KJ/mole\ de\ ZnS\ entre\ 800\ et\ 1000^\circ\ C}   \\\end{matrix}
\begin{matrix} & \\ ZnO +  C & \overrightarrow{\qquad} & Zn + CO \   \\\end{matrix}
\begin{matrix} & \\ ZnO +  CO & \overrightarrow{\qquad} & Zn + CO_2 \   \\\end{matrix}


\begin{matrix} & {}_{\rm{T\ >\ 90^\circ\ C }} & \\ ZnS +  Fe_2(SO_4)_3 & \overrightarrow{\qquad\qquad\qquad} & ZnSO_4 + 2FeSO_4 + S\ (solide)\ \\\end{matrix}