Réception des ondes radioélectriques

Un article de Wikipédia, l'encyclopédie libre.

Les techniques de réception des ondes radioélectriques permettent de restituer les informations analogiques ou numériques portées par une onde radioélectrique : divers schémas de récepteurs, de filtrage, de démodulation sont utilisées, en fonction des applications et des fréquences. Elles ont été l'objet de spectaculaires évolutions depuis l'apparition des circuits intégrés (synthétiseurs, processeurs).

Cet article traite des différentes techniques permettant de restituer le signal électrique reçu en sortie de l'antenne, pour l'appliquer aux circuits de traitement.

Sommaire

[modifier] Définitions et limites

Dans un canal de télécommunication radioélectrique, les frontières entre « antenne », « réception », « démodulation », « traitement du signal » sont définies par des habitudes aussi bien que par des techniques différentes.

En général, dans un système complexe (satellite, radar, etc.), les circuits de « réception » commencent à la sortie de l'antenne, le signal étant sous forme électrique, jusqu'à la sortie du démodulateur analogique principal, Ce signal en "bande de base" étant à un niveau suffisant et permettant la démodulation ultérieure de ses diverses composantes, puis leur traitement et décodages éventuels.

La réception se place ainsi après la propagation du signal dans l'espace, et les antennes, et avant les démodulations secondaires, multiplexages, décodages, etc.

Dans un système simple, comme la radiodiffusion, le terme "réception" comporte en fait tous les éléments jusqu'à la sortie audiofréquence, et même le haut-parleur.

[modifier] Caractéristiques principales d'un récepteur

[modifier] Sensibilité

La sensibilité d'un récepteur est l'amplitude du signal à appliquer à son entrée pour obtenir à la sortie du démodulateur un rapport signal sur bruit déterminé. La sensibilité d'un récepteur définit sa capacité à recevoir des émetteurs faibles ou lointains. Elle s'exprime de diverses façons selon les applications :

  • En radio AM ou radio FM : en volts ou dBV à l'entrée pour obtenir une puissance de sortie audio donnée. Elle est alors mesurée en utilisant un générateur de signaux calibrés ; le signal de sortie est modulé à 30 % par un signal audio de 1 kHz.
  • En radiotéléphonie HF et VHF, c'est le niveau à l'entrée antenne donnant un rapport signal sur bruit (S/B) donné en sortie audio, dans chaque modulation. En effet le bruit dans le récepteur dépend de la largeur du filtre utilisé et du type de démodulation.

Exemple de spécification d'un récepteur de trafic sensible : 0,3 µV à l'entrée pour 10 dB de S/B en sortie, en BLU. Le S/B de 10 dB étant une limite basse acceptable en BLU, un signal de 0,3 µV est nécessaire pour l'obtenir, en ne considérant que la contribution du récepteur (le bruit propre de l'antenne, et surtout de l'environnement extérieur pouvant être prépondérant).

  • Pour un récepteur entrant dans un système (exemple : faisceau hertzien, répéteur satellite, etc.), la sensibilité est séparée en deux paramètres : le facteur de bruit d'entrée et le gain global.

Les signaux d'entrée pouvant être très faibles, les niveaux sont exprimés en microvolts, ou en « dBµV » (dB relatif à 1 microvolt).

[modifier] Sélectivité

La sélectivité d'un récepteur décrit l'aptitude du récepteur à séparer le signal désiré des signaux perturbateurs (tels que d'autres émetteurs à des fréquences voisines). La sélectivité peut être définie globalement par le facteur de réjection du canal adjacent ou du canal alterné, c'est-à-dire le rapport entre les puissances mesurés dans le haut-parleur lorsque, le récepteur étant réglé sur la fréquence Fp, le générateur est réglé à la fréquence Fp, Fp + LC ou Fp + 2LC. LC étant la largeur d'un canal (5 ou 10 kHz pour les émission AM par exemple).

Un récepteur idéal présenterait une réponse en fréquence « carrée » : réponse constante dans la largeur de bande de la modulation, réjection totale hors du canal utile. Un récepteur réel est caractérisé par :

  • ses fluctations de gain et de phase dans la bande utile reçue, qui doivent être minimisées;
  • sa réjection des canaux proches, à maximiser;
  • sa réjection générale des signaux hors bande, à maximiser également.

Ces divers paramètres s'expriment par un graphique donnant la réponse en fréquence du récepteur attaqué par un générateur étalonné, avec trois chiffres principaux :

  • largeur en Hz à -3 dB ;
  • largeur en Hz à -20 dB ;
  • réjection hors bande en dB.

le rapport entre la largeur à -3 dB et à -20 dB définit le facteur de forme du filtrage (raideur).

[modifier] Dynamique

La dynamique d'un récepteur s'exprime sous deux aspects :

  • Le rapport entre le signal le plus grand toléré à l'entrée avant apparition de distorsions et d'intermodulations, et le signal le plus faible (déterminé par le bruit du récepteur). Cette dynamique est obtenue en général par un système de contrôle automatique de gain.
  • Le signal maximum hors bande toléré pour un niveau d'intermodulation donné sur le signal utile. Cette performance est liée à sa plage de linéarité.

La conception d'un récepteur pour des signaux à faible dynamique dans un environnement de bruit radioélectrique stable (par exemple un récepteur de télévision satellitaire) est en effet beaucoup plus simple que celle d'un récepteur de trafic, capable de recevoir un signal à un niveau de 1 microvolt avec des signaux de fréquence proche à des niveaux de 100 mV par exemple.

[modifier] Stabilité

Le terme stabilité regroupe plusieurs notions, liées aux variations des performances en fonction de la température, de la tension d'alimentation et du vieillissement.

Le point essentiel est la dérive de l'accord, donc de la fréquence reçue, en fonction de la température et du temps. Elle s'exprime selon diverses échelles de temps :

  • à court terme, pendant le démarrage d'un récepteur ;
  • à moyen terme, selon température et alimentation, en Hz par degrés C (Hz/°C) ;
  • à long terme, selon le vieillissement des composants, en limites de variation absolue.

Pour assurer la stabilité en fréquence, les récepteurs peuvent utiliser des techniques de compensation, de stabilisation en température, de commande automatique de fréquence (CAF), des oscillateurs à quartz commandant un synthétiseur, des horloges maître externes, par exemple atomiques, comme certains récepteurs GPS militaires.

Quand tous les oscillateurs d'un récepteur sont commandés par un « oscillateur maître » unique, c'est la stabilité de cet oscillateur qui fixe la performance. Les ordres de grandeur de stabilités possibles varient de 10-5 pour un quartz standard à 10-7 pour un quartz sélectionné et stabilisé en température (TCXO ou OCXO), jusqu'à 10-11 pour une horloge atomique.

[modifier] Bruit de phase

Cette performance définit les fluctuations de phase ajoutées au signal par le récepteur. Elle est essentielle pour les démodulation de phase (GPS par exemple) ou de fréquence à bande étroite. Ces fluctuations sont dues principalement aux oscillateurs locaux, à la qualité de l'oscillateur maître et aux méthodes de synthèse qui suivent. Les oscillateurs issus de multiplication analogique sont par exemple exempts des bruits de phase parasites qui affectent les synthétiseur logiques

Elle se définit en largeur de la raie spectrale en sortie à divers niveaux , pour une entrée supposée parfaitement stable.

[modifier] Réglage d'accord

Selon qu'un récepteur doit recevoir un canal fixe ou une sélection de canaux, ou une bande de fréquence continue, il utilisera diverses techniques d'accord :

  • du plus simple : récepteur monocanal (GPS, télécommande de portail, etc.) ;
  • au plus sophistiqué : récepteur à réglage continu par pas de 10 Hz couvrant de 10 KHz à de 1 000 MHz (récepteur de traffic ou de renseignement).

Historiquement, l'accord des récepteurs se faisait par des composants LC variables dans les filtres et oscillateurs, puis de plus en plus par des synthétiseurs d'abord analogiques à quartz, puis numériques à boucle à verrouillage de phase, enfin à synthèse directe (DDS).

[modifier] Autres spécifications

Les caractéristiques d'interface et d'utilisation sont très liées au type d'application :

  • impédance d'antenne : généralement 50 ohms, mais certains récepteurs sont munis d'une entrée haute impédance pour les MF ;
  • tension et plage d'alimentation ;
  • limites d'environnement (humidité, température, etc.) ;
  • enfin les récepteurs professionnels peuvent être spécifiés en MTBF ou durée de vie dans leur application.

[modifier] Architecture d'un récepteur

L'architecture des récepteurs a évolué progressivement depuis le simple détecteur, jusqu'aux schémas à multiple conversion et synthétiseurs. Les étapes principales de définition d'un récepteur pour une application nouvelle, ou une amélioration d'un concept existant, sont destinées à assurer les performances demandées :

  • l'analyse de la chaîne de gain : répartition, stabilité, etc.
  • l'analyse du plan de fréquence : fréquences images, fréquences parasites, etc.
  • L'analyse des filtrages: de canal, de réjection des images , des bandes proches, etc.
  • l'analyse du facteur de bruit global tous étages compris : formule de Friis, etc.
  • L'analyse des oscillateurs locaux et de leur méthode de génération : pureté spectrale, stabilité de fréquence, etc.

[modifier] Gain global et stabilité

Le gain global du récepteur est défini par le rapport entre le niveau souhaité en sortie et le niveau le plus faible attendu en entrée.

Ce gain peut-être très élevé, par exemple un récepteur de trafic devant convertir un signal de 0,3 µV en entrée, en un signal de 300 mV avant démodulation, soit un gain de 106 en tension ou de 120 dB en puissance.

Un circuit amplificateur à fréquence unique devient instable par accrochage si son gain dépasse les découplages entre entrée et sortie, ceci étant d'autant plus difficile à obtenir quand la fréquence augmente. Ce phénomène d'« accrochage » est évidemment à éviter. L'architecture des récepteurs modernes permet de répartir ce gain entre l'étage d'entrée et un ou plusieurs étages à fréquences intermédiaires.

[modifier] Définition du plan de fréquence

Le plan de fréquence est le résultat des choix de changements de fréquence et de filtrage, permettant de garantir les performances de stabilité et de sélectivité de réception, avec un minimum de fréquences parasites. Il définit les méthodes de génération des oscillateurs locaux et les performances de filtrages des différents étages. Le choix du plan de fréquence est issu d'analyses des produits parasites , des technologies d'oscillateurs locaux et de filtres.

Chaque mélangeur produit des fréquences de mélange non désirées, ainsi que des réceptions de fréquences images. Chaque oscillateur produit outre sa fréquence, des harmoniques multiples. Ces divers produits sont appelés fréquences de réception parasites ou spurious et doivent soit être placés hors bande de réception, soit minimisés sous le niveau du bruit.

Historiquement, les récepteurs à simple changement de fréquence utilisaient un oscillateur commuté à quartz multiples ou un oscillateur à condensateur variable. La nécessité de stabilité améliorée pour la modulation BLU ou les modes numériques à amené aux récepteurs à multiples changements de fréquence, aux oscillateurs à synthétiseurs, d'abord à boucle de phase, puis à synthèse directe[1].

[modifier] Récepteur à simple conversion

Le récepteur à simple conversion, historiquement appelé superhétérodyne, est la structure de récepteur la plus utilisée, tant en radio qu'en télévision ou en hyperfréquences (radar, GSM, GPS, etc.). Elle est caractérisée par l'utilisation d'un étage changeur de fréquence, ce qui permet une amplification plus aisée du signal.

Dans un récepteur superhétérodyne, les différentes fonctions d'amplification, de filtrage, de démodulation, sont confiées à des étages distincts :

  • la sensibilité est déterminée par les différents amplificateurs ;
  • la sélectivité est déterminée par le filtre FI ;
  • la réjection des fréquences images est assurée par le filtre d'entrée.

Notations:

  • Fo est la fréquence de l'oscillateur local.
  • Fp est la fréquence de la porteuse à recevoir.
  • Fi est la fréquence de l'amplificateur intermédiaire.

Le schéma ci-dessous montre la structure du récepteur superhétérodyne courant utilisé en radiodiffusion AM.

Structure d'un récepteur superhétérodyne

[modifier] Récepteur à multiple changement de fréquence

Dans le récepteur superhétérodyne, la valeur de la fréquence intermédiaire influence à la fois la sélectivité et la réjection de la fréquence image. Lorsque la FI est grande, la réjection de la fréquence image est aisée (puisqu'elle est située à 2.FI de Fp) mais il est difficile d'obtenir une bonne sélectivité.

C'est la raison pour laquelle certains récepteurs (ondes courtes, mais aussi récepteurs de signaux de satellites, radar, etc.) mettent en œuvre un double changement de fréquence. Le premier changement de fréquence utilise une fréquence intermédiaire (FI1) élevée (par exemple 50 MHz) de façon à rejeter aisément la fréquence image. La seconde fréquence intermédiaire, FI2, sera nettement plus basse (par exemple 455 kHz), ce qui permet d'utiliser des filtres piézoélectriques ayant une bande passante étroite et des flancs raides.

Structure d'un récepteur à double changement de fréquence

Puisque FI1 est fixe, le second oscillateur local peut être à fréquence fixe, stabilisé à l'aide d'un quartz.

Ce schéma à double conversion peut être encore raffiné en triple conversion, voire davantage, soit pour permettre des ajustements de filtrage ou de réglage, soit pour permettre des démodulation de signaux aux bandes passantes trés différentes, par exemple radio FM et télégraphie. Chaque démodulateur est alors précédé d'un amplificateur et filtre à une fréquence spécifique.

[modifier] Organes principaux d'un récepteur

[modifier] Filtre d'antenne ou « présélecteur »

Il élimine les signaux indésirables dus aux « fréquences images » (voir plus loin). Il est placé avant l'ampli RF, de façon à éviter sa saturation par des signaux hors de la bande utile. Dans un récepteur pour une bande réduite, ce filtre peut être fixe, alors que pour un récepteur « toute bande » il est commutable, chaque filtre couvrant une bande, ou un demi-octave dans les schémas modernes.

Les filtres à cavités sont utilisés des UHF aux térahertz. Dans ces filtres c'est le champ électromagnétique qui est filtré, grâce à la géométrie de cavités couplées entre elles. Ils sont utilisés par exemple dans les diplexeurs de terminaux satellite.

Les filtres à réseaux d'éléments réactifs permettent tout filtrage, passe-bas, passe-haut ou passe-bande, avec des bandes relatives faibles (10-50 %). Ils sont utilisés par exemple comme présélecteurs (réjecteur de fréquence image), dans les montages à changement de fréquence.

[modifier] Amplificateur d'entrée

Appelé aussi LNA (amplificateur faible bruit, ou low noise amplifier), il assure une première amplification. Il est conçu de façon à obtenir le meilleur rapport signal, sur bruit possible spécialement aux fréquences supérieures à 30 MHz. À ces fréquences le bruit extérieur au récepteur est faible, le bruit interne est alors la principale limitation .

Dans les bandes HF, La linéarité en présence de signaux forts est le facteur principal de performance. Ces deux facteurs étant en partie incompatibles, les récepteurs de trafic comportent un réglage de gain ou un atténuateur, permettant de choisir entre l'optimisation du facteur de bruit ou de la dynamique.

[modifier] Mélangeur

Les mélangeurs sont utilisés sur le signal dans les récepteurs à changement de fréquence, ainsi que dans les circuits générateurs des oscillateurs locaux .

Le mélangeur est un circuit à deux entrées, fournissant en sortie une fréquence somme ou différence des deux fréquences d'entrée. Le mélangeur idéal est un multiplicateur, ce qui explique le symbole utilisé. Il doit être linéaire pour l'entrée « porteuse » et créer un minimum de produits d'intermodulation non désirés.

Un circuit mélangeur simple comme un transistor bigrille crée, outre les composantes voulues, tous les produits d'intermodulation entre les deux entrées, alors qu'un circuit plus complexe, comme un mélangeur équilibré minimise ces composantes.

Le mélangeur le plus simple est un organe non linéaire, par exemple une diode, recevant la somme des deux signaux : le signal porteuse à bas niveau, le signal oscillateur local à fort niveau. Ce schéma équipait les premiers radars, et est encore utilisé dans les bandes térahertz quand aucun autre composant n'est disponible.

Si des signaux de fréquences Fo et Fp sont appliqués à l'entrée du mélangeur, on retrouve en sortie des signaux à Fo et Fp mais aussi à Fo + Fp et |Fo - Fp|. Le filtre FI va supprimer les composantes Fo, Fp et Fo + Fp, ne laissant que la composante |Fo - Fp| appelée fréquence intermédiaire, FI.

L'utilisation d'un mélangeur introduit aussi des produits de mélange non désirés: si le récepteur est conçu pour F0 = Fp+FI, un signal d'entrée à la fréquence F0+FI sera également reçu. Cette fréquence F0+FI (soit Fp+2FI) est appelée "fréquence image" et doit être éliminée au niveau du filtre d'entrée.

Mélangeur non-linéaire

[modifier] Oscillateur local

Il pilote la seconde entrée du mélangeur. Sa fréquence Fo est choisie de façon à ce que la fréquence d'entrée soit convertie en fréquence intermédiaire. Il a donc deux fréquences possibles : Fo = Fp + FI ou Fp - FI.

Selon les fréquences, il peut être issu d'une chaîne multiplicatrice, d'un synthétiseur, ou d'un simple oscillateur à quartz. Son niveau de sortie doit permettre le fonctionnement du mélangeur, par exemple environ 10 dBm pour un mélangeur équilibré en hyperfréquence.

[modifier] Synthétiseur

Les oscillateurs locaux à boucle de phase (ou PLL) ont d'abord été utilisés dans les années 1970 en sélection des sous-bandes, par pas de 100kHz ou 1MHz, les circuits divideurs logiques n'étant pas encore disponibles. Cette fréquence sélectionnée par pas servait de premier oscillateur local, la sélection fine de fréquence étant toujours assurée par un oscillateur variable (ou "VFO") en second oscillateur local.

L'apparition des circuits intégrés en diviseurs variables à permis leur usage jusqu'au pas de sélection de canal, ce schéma est encore courant en radiodiffusion et télévision. Les synthétiseurs à boucle PLL simple ont cependant une limitation de temps de commutation si le pas est fin, ce qui est résolu par les synthétiseurs à double boucle, utilisés dans les récepteurs de trafic modernes.

Les oscillateurs à synthèse directe ou DDS (direct digital synthesis) remplacent progressivement les PLL. Ils permettent une incrémentation fine, sans temps de commutation néfaste, se rapprochant ainsi de la souplesse des VFO[2].

[modifier] Amplificateur intermédiaire

Le changement de fréquence permet d'amplifier et de filtrer à une fréquence fixe. Le filtre utilisé dépend de la bande relative et de la raideur à obtenir. Il doit supprimer les signaux indésirables à des fréquences proches de Fp, ainsi que les composantes indésirables générées par le mélangeur. D'une façon générale, le filtrage à fréquence intermédiaire est responsable de la sélectivité de réception, sa largeur de bande doit donc être légèrement supérieure à celle du signal à recevoir, par exemple:

filtres céramique 455 kHz à six éléments (à gauche) et filtre céramique 10,7 MHz (à droite)
filtres céramique 455 kHz à six éléments (à gauche) et filtre céramique 10,7 MHz (à droite)

Les filtres à circuits accordés, ou plus simplement « filtres LC », permettent des bandes relatives moyennes (de 10 % à 1 %) jusqu'aux fréquences UHF. Ils sont utilisés par exemple dans les fréquences intermédiaires des radars.

Les filtres piézoélectriques sont adaptés aux fréquences BF à VHF, permettent des bandes relatives étroites (de 1 % à 0,01 %). Ils peuvent être de type filtres céramiques économiques largement utilisés en réception télévision ou radiodiffusion. Les filtres à quartz plus chers, donnent une meilleure réponse en fréquence (flancs plus raides), sont utilisés dans les récepteurs professionnels ou radioamateurs en HF (récepteurs de trafic). Ni la fréquence centrale ni la largeur de bande ne peuvent être modifiés.

L'amplificateur à fréquence intermédiaire est responsable de l'essentiel du gain du récepteur. Il est souvent constitué de plusieurs étages avec un contrôle automatique du gain (CAG). Il amène le signal au niveau nécessaire pour la démodulation.

[modifier] Démodulateur

D'une façon générale, un démodulateur opère la fonction inverse d'un modulateur. Alors que ce dernier modifie une des caractéristiques (amplitude ou fréquence) d'une onde porteuse, le démodulateur extrait l'information de la porteuse et restitue le signal en bande de base.

Pour les signaux modulés en amplitude, le démodulateur peut être un redresseur à diodes, ou un démodulateur synchrone, plus linéaire.

Pour les signaux modulés en fréquence, le démodulateur peut être un discriminateur, un détecteur de rapport ou un discriminateur à coïncidence (aussi appelé détecteur à quadrature ou détecteur synchrone).

[modifier] Autres structures de récepteurs

La structure superhétérodyne, à un ou plusieurs changements de fréquence est aujourd'hui universelle, mais d'autres schémas ont historiquement été utilisés depuis le poste à galène, et peuvent encore être expérimentés par les amateurs.

[modifier] Récepteur à réaction ou super-réaction

Récepteur à réaction
Récepteur à réaction

Ce schéma est une curiosité historique, mais permet un très grand gain avec un seul composant actif. Le principe est de mettre un amplificateur à la limite de l'oscillation, zone où le gain augmente indéfiniment. Seule la stabilité des couplages et composants limite le gain. La sélectivité est médiocre et inadaptée aux communications modernes.

Un récepteur simple et original utilisant un tube à vide est représenté ici. Le réglage de réaction est obtenu par un couplage inductif variable, le gain par la tension d'anode.

Dans le schéma à super-réaction, une fréquence de hachage est ajoutée, permettant de mettre l'amplificateur en zone d'oscillation périodiquement. Pendant un temps bref, son gain est infini. Ce schéma est plus stable, mais totalement hors normes de compatibilité radioélectrique, car il émet à la fréquence d'accord.

[modifier] Récepteur à amplification directe

La structure de ce récepteur est très simple :

  • un ou plusieurs étages d'amplification portent le signal d'antenne à un niveau suffisant pour permettre un fonctionnement correct du démodulateur (typiquement 300 mV) ;
  • un filtre de bande élimine les signaux indésirables ;
  • le démodulateur extrait du signal modulé le signal modulant, c'est-à-dire l'information originale.
Structure d'un récepteur à amplification directe

Dans cette structure, la sensibilité et la sélectivité sont déterminées par l'amplificateur RF. Le récepteur à amplification directe n'est utilisé que dans des applications simples, pour capter un seul émetteur, dont le signal est relativement fort. Il était utilisé par exemple dans les premiers récepteurs de télévision.

[modifier] Récepteur à conversion directe

La structure ressemble à celle du récepteur superhétérodyne, mais ici on choisit Fo = Fp. La fréquence intermédiaire est donc nulle, et on retrouve à la sortie du mélangeur le signal modulant lui-même. L'ampli FI, le filtre FI et le démodulateur ont donc disparu.

Structure d'un récepteur à conversion directe
  • La sensibilité du récepteur est déterminée par les amplis RF et AF. Vu la disparition de l'ampli FI, elle est moins élevée que celle d'un récepteur superhétérodyne.
  • La sélectivité est déterminée par le filtre AF.
  • Il n'y a pas de fréquence image, donc moins de filtrage d'entrée.
  • Fo doit être rigoureusement égal à Fp, sinon le signal démodulé est décalé en fréquence.

Cette structure est intéressante pour sa simplicité de réalisation mais peu utilisée.

[modifier] Notes et références

  1. [1] users.skynet.be, « Cours de radioamateur en vue de l'obtention de la licence complète »
  2. Venceslav F. Kroupa, Direct Digital Frequency Synthesizers, Wiley-IEEE Press, 1998 (ISBN 0780334388) [(en) présentation en ligne sur amazon.com]

[modifier] Bibliographie

[modifier] Articles connexes

[modifier] Liens externes