Pesanteur

Un article de Wikipédia, l'encyclopédie libre.

Tableau montrant la vitesse d'un objet accélérant à 1g avec le temps. Il ne tient pas compte de la résistance de l'air ou de la vitesse initiale.
Tableau montrant la vitesse d'un objet accélérant à 1g avec le temps. Il ne tient pas compte de la résistance de l'air ou de la vitesse initiale.

Le champ de pesanteur (ou plus couramment pesanteur) est un champ attractif auquel sont soumis tous les corps matériels au voisinage de la Terre : on observe ainsi qu'en un lieu donné tous les corps libres chutent en direction du sol suivant la même direction, appelée verticale[1]. À la surface de la terre, le champ de pesanteur vaut approximativement 9,81 Newton par kilogramme. La force à laquelle est soumise un corps en raison de la pesanteur est appelée poids de ce corps et est directement relié à la pesanteur par sa masse. Si l'essentiel de la pesanteur est d'origine gravitationnelle c'est-à-dire due à l'attraction mutuelle entre corps massifs, le fait que la pesanteur soit définie dans le référentiel terrestre et que la planète Terre soit en rotation autour de son axe introduit une correction sous la forme d'une force d'inertie centrifuge.

Cette définition est en fait généralisable aux autres planètes : on parle alors de pesanteur martienne par exemple.

Sommaire

[modifier] Poids

Un objet de masse m dans un lieu où l'accélération de la pesanteur vaut g, apparaît soumis à une force verticale, appelée poids de l'objet : P = mg.

En 1903, on a défini le kilogramme-force comme unité de mesure force. C'était le poids d'une masse de 1 kilogramme en un lieu où l'accélération de la gravité valait gn = 9,80665 m s-2, l’accélération de la gravité standard.

Le kilogramme-force est une unité obsolète, valant par définition 9,80665 Newton.

[modifier] Origine de la pesanteur

La première description quantitative de la pesanteur a été donnée par la loi universelle de la gravitation de Newton. La pesanteur à la distance R du centre d'un astre sphérique isolé formé de couches homogènes, et de masse totale M est dirigée vers le centre de l'astre et vaut  g=G \frac{M}{R^2} D'après Newton, il existe une force instantanée à distance entre deux masses m et M, valant G \frac{m M}{R^2}.

G=6,67259\times 10^{-11}\cdot m^3\cdot kg^{-1}\cdot s^{-2} ou N\cdot m^2\cdot kg^{-2}.

La théorie de la relativité générale d'Einstein décrit comment l'espace-temps se courbe à cause de la présence d'une densité de masse. Cette théorie contient la même constante universelle de gravitation G que la théorie de Newton et coïncide avec elle tant que la pesanteur reste faible. La théorie de Newton est suffisante pour prévoir le mouvement des satellites artificiels, mais la théorie d'Einstein est indispensable pour assurer la synchronisation des horloges des satellites GPS.

[modifier] Pesanteur terrestre

La Terre n'étant pas un astre sphérique isolé formé de couches homogènes, la pesanteur varie en fonction du lieu. La valeur de g = 9,81 n'est qu'approximative, entre autres du fait que la Terre n'est pas parfaitement sphérique et son rayon varie donc en fonction de la latitude, et de l'existence de forces axifuges. Ici on considère le rayon moyen de la Terre, qui vaut 6 371 km.


  1. La variation la plus évidente est la variation due à l'altitude h. Pour une variation de h petite devant R, la variation relative de l'accélération de la pesanteur vaut − 2Δh / R, soit -3×10-7 par mètre à la surface de la terre.
  2. À cause de l'aplatissement de la Terre, la pesanteur varie notablement avec la latitude (0,5 % d'écart entre l'équateur et les pôles). La non-sphéricité induit des perturbations des orbites des satellites, dont l'observation précise à quelques centimètres près par le système d'orbitographie DORIS fournit, par « calcul inverse », de précieuses indications sur les écarts par rapport à la forme sphérique.
  3. Les écarts de densité du sous-sol entrainent des variations locales de la pesanteur.
  4. Correction de rotation terrestre. Cette correction est due à la rotation quotidienne de la Terre, qui n'est donc pas un référentiel galiléen. Ce défaut est pris en compte pour un solide au repos par l'ajout à la pesanteur d'une accélération d’entraînement axifuge, dirigée perpendiculairement à l'axe de rotation terrestre, d'expression \vec{a}_{ie} = \left (\frac{2 \pi}{T}\right )^2d \ \vec{u}_r avec T = 86164 s et d la distance entre l'objet et l'axe de rotation terrestre.
  5. Correction des forces de marée, notamment dues à la Lune et au Soleil. Cette correction varie au cours de la journée. Elle est de l'ordre de 2×10-7 à la latitude de 40⁰.

Même ainsi corrigée, l'accélération de la pesanteur ne suffit pas pour décrire le mouvement de la chute des corps à la surface de la terre.

  1. Le frottement de l'air doit être pris en compte. C'est lui qui fait qu'une petite boule tombe "moins vite" qu'une grosse.
  2. La poussée d'Archimède. Si un objet n'est pas pesé sous vide, il faut ajouter à son poids mesuré le poids du volume d'air déplacé. Sans cette correction, un kilogramme de plume pèse un peu moins qu'un kilogramme de plomb.
  3. Si l'objet n'est pas immobile par rapport au référentiel terrestre en rotation, il faut prendre en compte l'accélération de Coriolis.

[modifier] Pesanteur lunaire

Sur la Lune, la pesanteur est environ six fois moindre que sur Terre. Cela explique les bonds extraordinaires des astronautes du programme spatial américain Apollo, de la mission historique d'Apollo 11 (21 juillet 1969) à celle d'Apollo 17, Apollo 13 exclue. La prévision de ce phénomène a été popularisée dans l'album de Tintin On a marché sur la Lune

[modifier] Notes et références

  1. Élie Lévy, Dictionnaire de Physique, Presses universitaires de France, Paris, 1988, page 601.

[modifier] Voir aussi

Pages sur ce thème sur les projets Wikimedia :

Autres langues