Morphisme de groupes

Un article de Wikipédia, l'encyclopédie libre.

Un morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure des groupes.

Plus précisément, si (G,*) et (G',\star) sont deux groupes de neutres respectifs e et e', une application f : G \rightarrow G' \, est un morphisme du groupes lorsque :

 \forall (x,y) \in G^2, \; f(x*y)=f(x) \star f(y)

Les deux propriétés suivantes sont des conséquences immédiates de la définition :

  •  f(e)=e' \,
     \forall x \in G,\;  f(x^{-1})=[f(x)]^{-1} \,

On dit que f est un isomorphisme de groupes si f est un morphisme bijectif. Dans ce cas, f-1 est aussi un morphisme de groupes. Si de plus, (G,*)=(G',\star), on parle d'automorphisme du groupe G .

Un morphisme de groupe transporte la loi de groupe, et va ainsi conserver toutes les propriétés liées à cette loi. Il est donc intéressant d'étudier comment se comportent les principaux objets de la théorie des groupes par les morphismes.

Sommaire

[modifier] Liens avec les sous-groupes

Soient  H \subset G \, un sous-groupe de  G \,

 H' \subset G' \, un sous-groupe de G' \, .

On a alors:

 f(H) \, est un sous-groupe de G' \,

 f^{<-1 >}(H') \, est un sous-groupe de G \,


Par ailleurs:

Si  H \, est un sous-groupe distingué de G\,, alors  f(H) \, est un sous-groupe distingué de f(G)\,

Si  H' \, est un sous-groupe distingué de G'\,, alors  f^{<-1>}(H') \, est un sous-groupe distingué de G=f^{<-1>}(G')\,

note: dans le cas où  f\, est surjectif, on a f(G)=G'\, et donc  f(H) \, est un sous-groupe distingué de G'\,

[modifier] Noyau et image

Par définition, on appelle noyau (Kern en allemand, kernel en anglais) du morphisme f, l'ensemble :  \ker f=f^{<-1>} \{ e' \} \,

L'image de f est défini par :  \mbox{Im} f=f(G) \,


On a les propriétés suivantes :

 \ker f est un sous-groupe distingué de G\,.

 \mbox{Im} f \, est un sous-groupe de G' \, .


Equivalence fondamentale :

 f \,\mbox{est injective} \Leftrightarrow \ker f = \{e\}

[modifier] Isomorphismes de groupe

On suppose dans cette section que f est un isomorphisme. Cela revient à dire que c'est un morphisme bijectif.

On dit alors que les deux groupes G et G' sont isomorphes.

L'application réciproque f − 1 de G' vers G est également un isomorphisme de groupe.

Les deux groupes G et G' vont avoir exactement les mêmes propriétés, c'est-à-dire que du point de vue de la théorie des groupes ils se comportent comme étant le même objet.

[modifier] Théorèmes d'isomorphismes

Intuitivement, le noyau de f traduit le défaut entre G et G'. Par exemple, lorsque kerf est trivial, le morphisme f est injectif. On peut donc voir (via f) le groupe G comme un sous-groupe de G'. C'est une situation optimale. À l'opposé, si kerf = G, alors le morphisme est trivial et ne donne aucun renseignement entre G et G'.

D'une certaine façon, le noyau et l'image indiquent à quel point un morphisme est ou n'est pas un isomorphisme. Cette approche peut permettre de mieux comprendre le premier théorème d'isomorphisme suivant :

f induit un isomorphisme du groupe quotient G/ \ker f \, vers  f(G) \,

On peut noter mathématiquement cet isomophisme par :

G/ker f\simeq Im(f)

On déduit de ce théorème fondamental deux autres théorèmes d'isomorphisme.

[modifier] Deuxième théorème d'isomorphisme

Si N est un sous-groupe normal de G et H un sous-groupe de G, alors  H \cap N est un sous-groupe normal de H et on a l'isomorphisme suivant :

H/(H \cap N) \simeq NH/N

[modifier] Troisième théorème d'isomorphisme

Soit N et M deux sous-groupes normaux de G. N/M est alors un sous-groupe normal de G/M et on a l'isomorphisme suivant :

(G/M)/(N/M)\simeq G/N

Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment Algèbre universelle#Passage au quotient et théorèmes d'isomorphie.

[modifier] Bibliographie

  • Elements de théorie des groupes , Josette Calais , PUF , Paris 1984.
  • Algèbre générale , Bernard Charles et Denis Allouch , PUF , Paris , 1984.