Méthode d'Euler

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler, est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus basique des méthodes de résolution numérique des équations différentielles.

Sommaire

[modifier] Équation différentielle

La méthode d'Euler est une méthode numérique élémentaire de résolution d'équations différentielles du premier ordre, de la forme

\forall x\in I, u'(x)=f(x,u(x))

I\ est un intervalle de \mathbb R et f\ une fonction réelle sur I\times\mathbb R.

Étant donnée une condition initiale (a,u(a))\in I\times\mathbb R, la méthode fournit pour tout point b\in I une suite (u_n(b))_{n\in\mathbb N} d'approximations de la valeur u(b)\ que prend, lorsqu'elle existe, la solution de l'équation qui correspond à cette condition initiale. Divers jeux de conditions sur f\ peuvent assurer la convergence de cette suite.

u_n(b)\ s'obtient en calculant n\ valeurs intermédiaires (y_i)_{i\in[0,n]} de la solution approchée aux points (x_i)_{i\in[0,n]} régulièrement répartis entre a\ et b\ , donnés par

x_i = a + i\frac {b-a}{n}.

On étend cette notation à x_0 = a,\ y_0 = u(a) et x_{n} = b,\ y_{n} = u_n(b). Ces valeurs intermédiaires sont alors données par la relation de récurrence

y_{i+1} = y_i + (x_{i+1}-x_i)f(x_i, y_i),\ i\in[0,n-1].

[modifier] Intégration d'une fonction

L'intégration d'une fonction continue sur un segment peut être vue comme un cas particulier où la fonction f\ est continue et ne dépend que de x\ . On démontre alors aisément, en utilisant la continuité uniforme de f\ sur [a,b]\ (théorème de Heine), que la suite (u_n(b))_{n\in\mathbb N} est de Cauchy, et donc converge par complétude de \mathbb R.

[modifier] Méthode d'Euler pour une fonction

Pour calculer des valeurs approchées d'une primitive G de f sur I = [x0, xn], on divise I en n intervalles et on choisit h =\frac{x_n - x_0}{n}

Pour la valeur initiale y0 on a F(x0) = G(x0) = y0 ce qui permet de placer le premier point A0 (x0 ; y0).

Pour les n valeurs x1 = x0 + h, x2 = x1 + h, ..., xn = xn-1 + h, on calcule de proche en proche, en relation avec la propriété de la dérivée citée ci-dessus, les n valeurs approchées F(x1), F(x2), ..., F(xn) de G.

En effet G est dérivable en x0 et G'(x0) = f(x0) :

F(x0 + h) = F(x0) + h f(x0) donc F(x1) = y0 + hG'(x0) \approx G(x1) ; soit y1 = y0 + h f(x0) st F(x1) = y1 \approx G(x1).

On recommence avec x1 :

F(x1 + h) = F(x1) + h f(x1) donc F(x2) = y1 + hG'(x1) \approx G(x1) + hG'(x1) \approx G(x2) ; soit y2 = y1 + h f(x1) et F(x2) = y2 \approx G(x2).

Puis y3 = y2+ h f(x2) = F(x3) \approx G(x3).

Et ainsi de suite n itérations jusqu'à yn = yn-1 + h f(xn-1) = F(xn) \approx G(xn).

[modifier] Exemple : f(x)= \frac{x}{2}

Étant donné la fonction f(x)= \frac{x}{2} et des valeurs initiales x0 = 1 et y_0 = F(x_0)= \frac{1}{4}.

Le calcul des valeurs F(x1), F(x2), F(x3), ... permet d'obtenir la représentation graphique de F par les segments [A0A1], [A1A2], [A2A3], ...

Image:Integration x div 2.gif

La fonction f(x)= \frac{x}{2} a pour primitive G(x)= \frac{x^2}{4} avec x0 = 1 et y_0 = G(x_0)= \frac{1}{4}.

La courbe (C) représentative de G est ici placée sur le même graphe pour visualiser le calcul des tangentes.

La fonction affine est une approximation de la primitive G.

[modifier] Lien externe

Augmenter n pour diminuer h et obtenir de bien meilleurs résultats :

voir Méthode d'Euler - MIAM