Loi d'inertie de Sylvester

Un article de Wikipédia, l'encyclopédie libre.

Il s'agit en fait d'un théorème de classification des formes quadratiques sur un espace vectoriel réel de dimension finie.

Soit \,V un espace vectoriel sur \,\R de dimension n, et \,q une forme quadratique de rang r. Il existe un entier s\le r et des formes linéaires indépendantes \,l_1,...,l_r telles que

q=-\sum_{i=1}^sl_i^2+\sum_{i=s+1}^rl_i^2

.

Cette écriture n'est pas unique, mais l'entier l'entier s n'en dépend pas. On l'appelle l'indice de \,q.

Deux formes quadratiques sur \,V sont équivalentes si et seulement si elles ont même rang et même indice.


Preuve.Le théorème de réduction de Gauss assure de l'existence de r des formes linéaires indépendantes \,l_1,...,l_r et de réels \,c_1,..., c_r tous non nuls tels que q=\sum_{i=1}^rc_il_i^2. L'existence de la décomposition annoncée s'obtient en renumérotant les \,c_i de façon à mettre en premier ceux qui sont strictement négatifs, puis en remplaçant \,l_i par \sqrt{\vert c_i\vert}l_i.

Pour montrer que s ne dépend que de q, montrons que c'est le maximum des dimensions des sous-espaces sur lesquels q est définie négative. (On montrerait de même que r-s est le maximum des dimensions des sous-espaces sur lesquels q est définie positive). Soient \,(e_1,\ldots,e_n) une base de \,V dans laquelle \,l_1,...,l_r sont les r premières fonctions coordonnées (en particulier, \,e_{r+1},\ldots,e_n est une base du radical \,\mathrm{rad}(q) de \,q), et \,F^- (resp.\,F^+) le sous-espace engendré par \,e_1,\ldots,e_s (resp. \,e_{s+1},\ldots,e_r). On obtient une décomposition

V=F^-\bigoplus F^+\bigoplus \mathrm{rad(q)}

en somme directe de sous-espaces deux à deux orthogonaux pour la forme bilinéaire associée à \,q, la restriction de \,q à \,F^+ (resp.\,F^-) étant définie positive (resp. définie négative). Soit \,G un sous-espace de dimension m sur lequel \,q est définie négative. Comme \,q est définie positive sur \,F^+, ces deux sous-espaces sont en somme directe et \,q est non dégénérée sur cette somme, donc m+(r-s)=\dim G+\dim F^+\leq r, c'est-à-dire m\leq s.

Passons maintenant au critère d'équivalence. Si \,q est une forme quadratique s'écrivant

q=-\sum_{i=1}^sl_i^2+\sum_{i=s+1}^rl_i^2

,

et si \,\phi est une application linéaire inversible, on a

q\circ\phi =-\sum_{i=1}^s(l_i\circ\phi)^2+\sum_{i=s+1}^r(l_i\circ\phi)^2.

Les formes \,l_i\circ\phi sont indépendantes si les \,l_i le sont, donc \,q et \,q\circ\phi ont même indice (on sait déjà d'après la théorie générale qu'elles ont même rang). Réciproquement, si \,q et \,q^\prime ont même indice et même rang, elles ont même matrice par rapport à des bases convenables et sont donc bien équivalentes.

[modifier] Liens internes