Formules de Binet

Un article de Wikipédia, l'encyclopédie libre.

En physique, en mécanique classique, les formules de Binet sont des expressions de la vitesse et de l'accélération d'un corps soumis à une force centrale telle que la gravitation ou un champ électrostatique.

Elles permettent d'exprimer, en coordonnées polaires, la position d'un mobile en fonction de l'angle formé par celui-ci. En effet, l'expression en fonction du temps est beaucoup plus difficile à établir. En particulier, les formules de Binet permettent de démontrer que, dans un champ de force centrale en 1/r², les trajectoires sont des coniques.

[modifier] Formules de Binet

On considère tout d'abord le cas attractif. En posant u = 1/r et en notant C la constante des aires, d'après la seconde loi de Kepler, on peut montrer que :

\vec{v} = -C\frac{du}{d\theta}\; \mathrm{e_r} + C u\; \mathrm{e_{\theta}} ;
\vec{a} = -C^2 u^2 \left[ \frac{d^2u}{d\theta^2} + u \right]\; \mathrm{e_r}.

Dans le cas répulsif, les composantes selon er seraient positives.

[modifier] Trajectoires coniques

On considère ici le cas attractif, le cas répulsif donnant exactement le même résultat. En utilisant la seconde loi de Newton, on a :

m \vec{a} = -k \cdot \frac{1}{r^2}\; \mathrm{e_r}.

En insérant l'expression de l'accélération et en remplaçant 1/r par u, puis enfin en projetant selon er, on a :

m C^2 \left[ \frac{d^2u}{d \theta^2} + u \right] = k, soit encore :
\frac{d^2u}{d \theta^2} + u = \frac{k}{mC^2}.

Cette équation différentielle s'intègre facilement : c'est un oscillateur harmonique. On obtient :

u(θ) = Acos(θ + φ) + B.

En revenant à l'expression de r, on a :

r(\theta) = \frac{1}{B + A \cos(\theta + \phi)}.

C'est bien l'expression d'une conique en coordonnées polaires, dont la nature exacte - parabole, hyperbole ou ellipse - dépend des conditions initiales.