Formule de Torricelli

Un article de Wikipédia, l'encyclopédie libre.

Formule d'hydrodynamique des fluides parfaits, qui exprime la conservation de l'énergie, exprimée par Torricelli :

Dans un vase contenant un fluide parfait (eau non visqueuse : dry water en anglais), d'un trou pratiqué à la hauteur h en-dessous de la surface horizontale, le liquide s'écoule avec une vitesse indépendante de sa masse volumique (pas de différence entre le mercure et l'eau !) : c'est la loi de Galilée sur la chute des corps translatée en hydrodynamique. Bien sûr la vitesse est V = \sqrt{2g h}, traduite de la simple chute libre.

[modifier] Démonstration

On considère une cuve remplie d'un liquide parfait et incompressible, dans laquelle a été percé un trou de petite taille à une hauteur h en dessous de la surface libre du liquide. On note A un point choisi au hasard sur la surface libre du liquide et B un point pris au niveau du jet libre généré par le trou.

On suppose que le trou est assez petit pour que :

  • le diamètre du trou soit négligeable devant la hauteur h de liquide au dessus du trou, de manière à ce que h puisse être considéré comme constant au niveau du trou ;
  • la surface s du trou soit négligeable devant la surface libre S du liquide ; la conservation du débit impose que vAS = vBs, d'où v_\text{A} = v_\text{B} (s/S) \ll v_\text{B} ; on peut donc considérer que la hauteur h ne varie pas au cours du temps, et que l'écoulement du liquide est permanent.

L'ensemble du liquide participant à l'écoulement, on peut relier les points A et B au travers d'une ligne de courant.

En admettant enfin que le champ de pesanteur est uniforme à l'échelle de la cuve, il est alors possible d'appliquer le théorème de Bernoulli au niveau des points A et B :

p_\text{A} + \rho g z_\text{A} + (1/2) \rho v_\text{A}^2 = p_\text{B} + \rho g z_\text{B} + (1/2) \rho v_\text{B}^2.

Or la pression au niveau de la surface libre du liquide pA et la pression au niveau du jet libre pB sont toutes deux égales à la pression atmosphérique p0, et d'autre part on peut négliger la vitesse du liquide au point A : vA = 0.

On en déduit l'expression de la vitesse du liquide au point B :

v_\text{B} = \sqrt{2 g (z_\text{A} - z_\text{B})} = \sqrt{2gh}.

En considérant les différentes hypothèses nécessaires à l'établissement de cette formule, l'analogie avec la chute libre doit être interprétée avec précaution.

[modifier] Voir aussi

chute libre