Fonction zêta de Lerch

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la fonction zêta de Lerch est une fonction spéciale qui généralise la fonction zêta d'Hurwitz et le polylogarithme. Elle est donnée par

L(\lambda, \alpha, s) = \sum_{n=0}^\infty
\frac { e^{2\pi i\lambda n}} {(n+\alpha)^s}

La fonction zêta de Lerch est reliée à la fonction transcendante de Lerch, qui est donnée par

\Phi(z, s, \alpha) = \sum_{n=0}^\infty
\frac { z^n} {(n+\alpha)^s}\,

par

\Phi(e^{2\pi i\lambda}, s,\alpha)=L(\lambda, \alpha,s)\,

[modifier] Cas particuliers

La fonction zêta d'Hurwitz est un cas particulier, donnée par

\zeta(s,\alpha)=L(0, \alpha,s)=\Phi(1,s,\alpha)\,

Le polylogarithme est un cas particulier de la fonction zêta de Lerch, donné par

\textrm{Li}_s(x)=z\Phi(z,s,1)\,

La fonction chi de Legendre est un cas particulier, donnée par

\chi_n(z)=2^{-n}z \Phi (z^2,n,1/2)\,

La fonction zêta de Riemann est le cas particulier suivant :

\,\zeta(s)=\Phi (1,s,1)

Enfin, la fonction êta de Dirichlet admet l'expression

\,\eta(s)=\Phi (-1,s,1)

[modifier] Liens externes

[modifier] Références

  • Mathias Lerch, Démonstration élémentaire de la formule: \frac{\pi^2}{\sin^2{\pi x}}=\sum_{\nu=-\infty}^{\infty}\frac{1}{(x+\nu)^2}, (1903), L'Enseignement Mathématique, 5, pp.450-453.
  • M. Jackson, On Lerch's transcendent and the basic bilateral hypergeometric series \,_2\psi_2, (1950) J. London Math. Soc., 25, pp. 189-196
Autres langues