Choc élastique

Un article de Wikipédia, l'encyclopédie libre.

Dans une partie de billard, les collisions sont pratiquement élastiques.
Dans une partie de billard, les collisions sont pratiquement élastiques.

Un choc dit parfaitement élastique se caractérise par la conservation de l’énergie cinétique totale des corps qui se heurtent [1]. De plus, comme pour tout type de choc sans frottement, la quantité de mouvement est conservée. La vitesse relative entre les objets avant collision est égale à celle après collision. Autrement dit, le coefficient de restitution (rapport des vitesses relatives) est égal à 1. On parle aussi parfois également de choc dur.

La collision élastique s'oppose en principe à la collision inélastique pour laquelle l'énergie cinétique n'est pas conservée (les corps qui se heurtent peuvent par exemple se déformer, ce qui consomme de l'énergie).

Sommaire

[modifier] Formulation pour deux corps

Si on considère le choc de deux corps 1 et 2 et :

  • \vec {p_1}\, la quantité de mouvement avant choc et \vec {p_1}'\, celle après choc du corps 1
  • \vec {p_2}\, la quantité de mouvement avant choc et \vec {p_2}'\, celle après choc du corps 2
  • m_1\, la masse du corps 1 (supposée constante)
  • m_2\, la masse du corps 2 (supposée constante)
  • \vec {v_1}\, la vitesse avant choc \vec {v_1}'\, celle après choc du corps 1
  • \vec {v_2}\, la vitesse avant choc \vec {v_2}'\, celle après choc du corps 2

Le théorème de conservation de la quantité de mouvement donne :

\vec {p_1} + \vec {p_2} = \vec {p_1}' + \vec {p_2}'\,

La conservation de l’énergie cinétique totale donne :

m_1 v_1^2 + m_2 v_2^2 = m_1 {v'}_1^2 + m_2 {v'}_2^2

Étant donné que \vec {p} = m \vec{v}, on obtient le système suivant pour un choc parfaitement élastique :

(1) \left\{\begin{matrix} \vec {p_1} + \vec {p_2} = \vec {p_1}' + \vec {p_2}' \\ \\ {\frac{p_1^2}{m_1} + \frac{p_2^2}{m_2} = \frac{{p'}_1^2}{m_1} + \frac{{p'}_2^2}{m_2}}\, \end{matrix}\right.\,

[modifier] Exemples de résolution

[modifier] Choc direct de deux points

Si une collision est dite directe, les vecteurs vitesse des points avant et après collision sont portés sur un même axe. En projetant dessus, le système (1) peut donc se simplifier sous la forme :

\left\{\begin{matrix} m_1 v_1 + m_2 v_2 = m_1 {v'}_1 + m_2 {v'}_2 \\ m_1 v_1^2 + m_2 v_2^2 = m_1 {v'}_1^2 + m_2 {v'}_2^2 \end{matrix}\right.\,

La résolution de ce système donne les vitesses après choc en fonction des masses et vitesses initiales :

\left\{\begin{matrix} {v'}_1 = \frac{m_1-m_2}{m_1+m_2} v_1 + \frac{2 m_2}{m_1+m_2} v_2 \\ \\ {v'}_2 = \frac{2 m_1}{m_1+m_2} v_1 + \frac{m_2-m_1}{m_1+m_2} v_2 \end{matrix}\right.\,


[modifier] Résolution sous forme vectorielle dans le cas de masses ponctuelles

Si \vec v_i et \vec v_i^{~'} , i = 1;2, sont les vitesses des corps respectivement avant et après le choc, et \vec V_I = \frac{m_1. \vec v_1 + m_2. \vec v_2}{m_1 + m_2} est la vitesse du centre d'inertie (inchangée avant et après le choc), alors  \vec v_i^{~'} = - \vec v_i + 2. \vec V_I , pour i = 1;2.


[modifier] Choc élastique en relativité restreinte

Le problème du choc élastique en mécanique relativiste est traité dans l'article sur la relativité restreinte.

Icône de détail Article détaillé : Collision élastique relativiste.

[modifier] Notes

  1. C’est-à-dire conservation de la masse et de la vitesse en grandeur et en direction

[modifier] Voir aussi

Autres langues