Champ équiprojectif

Un article de Wikipédia, l'encyclopédie libre.

Dans un espace affine euclidien E, un champ de vecteurs (\overrightarrow{V_P})_{P \in E} est équiprojectif si :

\forall P \in E, \forall Q \in E, (\overrightarrow{V_P} | \overrightarrow{PQ}) = (\overrightarrow{V_Q} | \overrightarrow{PQ})

(\;|\;) désigne le produit scalaire.

Il existe alors un endomorphisme antisymétrique u tel que :

\forall P \in E, \forall Q \in E, \overrightarrow{V_Q} = \overrightarrow{V_P} + u(\overrightarrow{PQ)}.

Sommaire

[modifier] Démonstration

[modifier] Antisymétrie

Soit O un point arbitraire de E. Pour tout vecteur \overrightarrow{x}, il existe un unique point P tel que \overrightarrow{x} = \overrightarrow{OP} et on définit u par u(\overrightarrow{x}) = \overrightarrow{V_P} - \overrightarrow{V_O}.

Montrons que, pour tous vecteurs \overrightarrow{x} = \overrightarrow{OP} et \overrightarrow{y} = \overrightarrow{OQ}, on a :

(u(\overrightarrow{x}) | \overrightarrow{y}) = - (\overrightarrow{x} | u(\overrightarrow{y}))

ce qui prouve l'antisymétrie de u.

On a en effet :

(u(\overrightarrow{x}), \overrightarrow{y}) = (\overrightarrow{V_P} - \overrightarrow{V_O}, \overrightarrow{OQ}) = (\overrightarrow{V_P}, \overrightarrow{OQ}) - (\overrightarrow{V_O}, \overrightarrow{OQ})
= (\overrightarrow{V_P}, \overrightarrow{OQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ}) en utilisant l'équiprojectivité du champ V
= (\overrightarrow{V_P}, \overrightarrow{OP} + \overrightarrow{PQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ})
= (\overrightarrow{V_P}, \overrightarrow{OP}) + (\overrightarrow{V_P}, \overrightarrow{PQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ})
= (\overrightarrow{V_P}, \overrightarrow{OP}) + (\overrightarrow{V_Q}, \overrightarrow{PQ}) - (\overrightarrow{V_Q}, \overrightarrow{OQ}) en utilisant de nouveau l'équiprojectivité.

Si on échange les rôles de \overrightarrow{x} et \overrightarrow{y}, on obtiendra :

(\overrightarrow{x}, u(\overrightarrow{y})) = (u(\overrightarrow{y}), \overrightarrow{x}) = (\overrightarrow{V_Q}, \overrightarrow{OQ}) + (\overrightarrow{V_P}, \overrightarrow{QP}) - (\overrightarrow{V_P}, \overrightarrow{OP})

On obtient bien :

(u(\overrightarrow{x}), \overrightarrow{y}) = - (\overrightarrow{x}, u(\overrightarrow{y}))

[modifier] Linéarité

On déduit de l'antisymétrie que u est linéaire. En effet, pour tout \overrightarrow{x}, \overrightarrow{y}, λ, on a :

(u(\lambda \overrightarrow{x}), \overrightarrow{y}) = - (\lambda \overrightarrow{x}, u(\overrightarrow{y})) = - \lambda (\overrightarrow{x}, u(\overrightarrow{y})) = \lambda (u(\overrightarrow{x}), \overrightarrow{y}) = (\lambda u(\overrightarrow{x}), \overrightarrow{y})

Cette égalité étant vraie pour tout \overrightarrow{y}, on en déduit que :

u(\lambda \overrightarrow{x}) = \lambda u(\overrightarrow{x})

On procède de même pour montrer que :

u(\overrightarrow{x}+\overrightarrow{x'}) = u(\overrightarrow{x})+u(\overrightarrow{x'})

[modifier] Cas de la dimension 3, torseur

Dans une base orthonormée directe, u, étant un endomorphisme antisymétrique, possède une matrice antisymétrique

\begin{pmatrix}0 & -c & b\\
c & 0 & -a\\
-b & a & 0 \\
\end{pmatrix}

Si on nomme \overrightarrow {\Omega} le vecteur de composantes \begin{pmatrix}a \\ b \\ c\end{pmatrix}, alors la matrice précédente est celle de l'application \overrightarrow x \to \overrightarrow \Omega \wedge \overrightarrow x.

On a donc \forall \overrightarrow{x}, u(\overrightarrow{x}) = \overrightarrow{\Omega} \wedge \overrightarrow{x} et donc

\overrightarrow{V_Q} = \overrightarrow{V_P} + \overrightarrow{\Omega} \wedge \overrightarrow{PQ}

(\overrightarrow{V_P})_{P \in E} est le champ des moments d'un torseur de résultante \overrightarrow{\Omega}.

[modifier] Exemple

L'exemple typique de champ équiprojectif en dimension 3 est le champ des vitesses d'un solide en mouvement. En effet, si P et Q sont deux points du solides, et si on note d la distance entre P et Q, on a :

\| \overrightarrow{PQ}\|^2 = d^2 = (\overrightarrow{PQ} | \overrightarrow{PQ})

et en dérivant par rapport au temps :

<\overrightarrow{V_Q} - \overrightarrow{V_P} | \overrightarrow{PQ}> = 0

\overrightarrow{V} désigne la vitesse en un point.

Le champ des vitesses est donc un torseur. Le vecteur \overrightarrow{\Omega} s'appelle vecteur instantané de rotation.

[modifier] Voir aussi