Équation polaire

Un article de Wikipédia, l'encyclopédie libre.

Le plan est muni d'un repère orthonormal (O,i,j). Si f\, est une fonction de \mathbb{R} dans [0 ; + \infty[ \,, on peut considérer l'ensemble des points M dont les coordonnées polaires (\rho, \theta)\, vérifient l'équation suivante

\rho = f(\theta) \,

On dit que la courbe en question a pour équation polaire :

\rho = f(\theta) \,

rem: si \rho = 0 \,, on placera alors le point M à l'origine du repère bien qu'en toute théorie, on ne puisse plus définir l'angle (\vec{i},\vec{OM}).

Si une courbe possède une équation polaire et si l'intervalle [\theta_1;\theta_2]\, est inclus dans le domaine de domaine de définition, la restriction de la courbe à cet intervalle peut être parcourue en tournant dans le sens trigonométrique de l'angle \theta_1 \, à l'angle \theta_2 \,.

Sommaire

[modifier] Base mobile

On introduit pour chaque valeur de θ une base orthonormale directe (u(θ),v(θ)), obtenue par rotation de θ à partir de la base (i,j). Ainsi

\vec u(\theta)=\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}
\qquad \vec v(\theta)=\begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}=\vec u(\theta+\frac\pi 2)

On s'efforcera d'exprimer toutes les notions géométriques à l'aide de cette base. Cependant comme ces deux vecteurs dépendent de θ, il ne faut pas oublier de les dériver eux aussi.

\frac{d\vec u}{d\theta}=\vec v \qquad \frac{d\vec v}{d\theta}=-\vec u

Remarque : dériver ces vecteurs revient à leur faire subir une rotation de π/2.

[modifier] Vecteur position

Par définition même des coordonnées polaires, \vec{u} est un vecteur unitaire colinéaire et de même sens que \vec{OM} et ainsi

\vec{OM}=f(\theta)\vec u

Couplée avec les formules de dérivation des vecteurs u et v ci dessus, cette formule permet de calculer tous les objets de géométrie différentielle usuels.

[modifier] Tangente à la courbe

Si f\, est une fonction dérivable alors

\frac{d\vec{OM}}{d\theta} = f'(\theta)\vec{u}(\theta) + f(\theta)\vec{v}(\theta)

Ce vecteur est un vecteur directeur de la tangente (T) à la courbe au point associé à θ. En toute rigueur il y a un cas particulier, qui est traité dans l'article tangente.

Si α est l'angle que forme (T) et (OM), on obtient alors la relation suivante :

\tan(\alpha)= |\frac{f(\theta)}{f'(\theta)}| si f'(\theta) \, est non nul
\alpha = \frac{\pi}{2} sinon

[modifier] Abscisse curviligne

Si l'origine est prise en \theta_0 \, alors l'abscisse curviligne, c’est-à-dire la longueur algébrique de la courbe entre le point M(\theta_0)\, et M(\theta_1)\, est :

\int_{\theta_0}^{\theta_1}\sqrt{f'^2(\theta)+f^2(\theta)}d\theta

[modifier] Rayon de courbure

Le rayon de courbure est le rayon du cercle tangent à (T) et qui approche « au mieux » la courbe.

Si la fonction f \, est deux fois dérivable, et si 2f'^2(\theta) + f^2(\theta)-f(\theta)f''(\theta) \, est non nul, le rayon de courbure est :

\frac{(f'^2(\theta) + f^2(\theta))^{3/2}}{2f'^2(\theta) + f^2(\theta)-f(\theta)f''(\theta)}

[modifier] Branches infinies

Pour étudier les branches infinies on revient en coordonnées cartésiennes.

[modifier] Équations polaires paramétriques

Si la courbe est donnée par une équation polaire paramétrique r(t),θ(t), les vecteurs vitesse et accélération peuvent être calculés dans la base mobile. On note par un point la dérivation par rapport au paramètre t

\vec V =  \dot{r} \vec u+  r\dot{\theta}\vec v
\vec A = ( \ddot{r} -r \dot{\theta}^2)\vec u+ (  r \ddot{\theta} +2\dot{r}\dot{\theta}) \vec v

[modifier] Voir aussi