Nombre d'Avogadro

Un article de Wikipédia, l'encyclopédie libre.

Le nombre d'Avogadro (du physicien Amedeo Avogadro), ou constante d'Avogadro, est le nombre d'entités dans une mole. Il correspond au nombre d'atomes de Carbone dans 12 grammes de l'isotope 12 du Carbone. De par sa définition la constante d'Avogadro possède une dimension, l'inverse d'une quantité de matière, et une unité d'expression dans le système international : la mole à la puissance moins un[1].

Si N(X) désigne le nombre d'entités X d'un échantillon donné, et si n(X) désigne la quantité de matière d'entités X du même échantillon, on obtient la relation[1] :

n(X) = {N(X) \over N_A}

Le nombre d'Avogadro correspond également au facteur de conversion entre le gramme et l'unité de masse atomique (u) :

1\ g \ = \ N_A \ u

Sommaire

[modifier] Valeur numérique

Dans les unités SI, le CODATA (en:CODATA) de 2006 recommande la valeur suivante :

N_A \simeq 6,022\ 141\ 79 \times 10^{23}\ {mol}^{-1}

Avec une incertitude standard de :

\plusmn\ 0,000\ 000\ 30\times 10^{23}\ {mol}^{-1}

Soit une incertitude relative de :

5,0 \times 10^{-8}

En 2003, une équipe de chercheurs de l'Office fédéral allemand de métrologie de Brunswick a déterminé une nouvelle valeur de la constante[2] :

N_A \simeq 6,022\ 1353 \times 10^{23} \ {mol}^{-1}

[modifier] Exposé simplifié

La masse de l'atome est pratiquement égale à la masse du noyau. Cela tient à deux choses :

  • Les électrons sont très légers comparés aux nucléons (nucléon = particule du noyau. 2 sortes de nucléons : le proton et le neutron).
  • Les électrons sont moins nombreux que les nucléons (il y a autant d'électrons que de protons).

En outre, le proton et le neutron ont quasiment la même masse. Par conséquent, on obtient une mesure assez précise de la masse de l'atome en multipliant son nombre de nucléons (encore appelé nombre de masse) par la masse du nucléon. La masse du nucléon est extrêmement petite, si petite qu'il en faut environ six cent mille milliards de milliards pour obtenir une mole de matière (égale a 12 g du carbone 12) ! Ce chiffre astronomique est le nombre d'Avogadro, noté NA.

Ainsi, la masse de NA molécules mesure assez précisément A grammes où A est le nombre de nucléons de la molécule. Par exemple, la molécule d'eau (constituée de deux atomes d'hydrogène H et d'un atome d'oxygène O) comporte en moyenne 18 nucléons (en moyenne 1 nucléon pour H et 16 nucléons pour O, les valeurs moyennes étant arrondies à l'unité), donc 18 grammes d'eau contient six cent mille milliards de milliards de molécules. L'atome de fer comporte en moyenne 56 nucléons (valeur arrondie), donc 56 grammes de fer contient six cent mille milliards de milliards d'atomes.

[modifier] Autre utilisation

[modifier] Histoire du nombre d'Avogadro

[modifier] Une conséquence du positivisme

Cela est dû aux circonstances particulières de la philosophie scientifique de l'époque : le positivisme interdisait les « hypothèses » non démontrées, ou non démontrables. Il valait mieux faire une théorie qui s'en passe.

Cela est dû aussi à l'incompréhension de la liaison covalente (réellement comprise par Heitler et London seulement en 1927, grâce à la mécanique quantique(1926)). La théorie ionique de Berzélius ne permettait pas l'existence du dihydrogène ou du dioxygène.

De ce fait, le langage hésite : avant de comprendre qu'une molécule est composée d'atomes, et pourquoi H2 plutôt que H4, et pourquoi NO2 plutôt que N2O4, il faut du temps pour amasser suffisamment de données compatibles, et écarter les « inclassables » (par exemple, les berthollides).

Au début du XIXe siècle, Avogadro énonça sa loi (1811). Ampère l'encouragea en 1814, mais il se rétracta devant la levée de boucliers des positivistes. La réaction des anti-atomistes (on disait les Équivalentistes) se durcit encore avec Dumas en 1836, puis Berthelot et Le Chatelier.

Le Congrès de Karlsruhe (1860) permit aux deux communautés d'enterrer la hache de guerre. Mais les jeunes chimistes en revinrent convertis à la théorie atomique par le rapport de Cannizzaro.

Il est alors acquis que dans un gaz dit parfait, le volume V0 occupé par N particules, sous la pression P0 et la température T0 est LE MÊME quel que soit le gaz!

Il restait à mesurer ce nombre, ce qui n'était plus qu'une question de métrologie.

[modifier] L'intervention de Maxwell

Le premier texte important de théorie cinétique est celui du XVIIIe siècle de Daniel Bernoulli qui calcula correctement la pression cinétique (1738, Hydrodynamica). Mais ce document passa inaperçu.

Lorsque Loschmidt trouva la première valeur en ordre de grandeur : 1024, cela donnait aux atomes une taille de 0,1 nm. Et il fallut toute l'autorité de Maxwell pour que ces résultats fussent considérés comme crédibles. La théorie cinétique des gaz avait acquis « ses galons » (1870).

[modifier] La mesure proprement dite

Elle n'a aucun intérêt en soi : le tableau de Mendeleïev décrivait les éléments et leur masse relative respective. Choisir tel ou tel élément comme référence est une convention, qui d'ailleurs a changé : il eût été naturel de choisir la masse d'une mole de protons égale à 1 gramme ; mais à l'époque, on ne savait même pas que l'atome était sécable. Or les nombres conventionnels comme les unités sont toujours faits non pour les théoriciens, mais pour les ingénieurs qui ont besoin de « certification ». Il fallait donc une mesure dont la traçabilité soit reconnue : le choix s'est fixé jusqu'à 2005, sur la définition : 12 grammes de 12C contiennent NA atomes.

Ce nombre est connu avec une mauvaise précision 1,7×10-7 et vaut : NA = 6,0221415×1023 mol-1.

Dès que l'on saura compter les atomes en grande quantité via des écluses à atomes individuels, cette valeur s'améliorera. Pour l'instant, c'est toujours le résidu d'impuretés dans le silicium qui est source de problème.

[modifier] Pour en savoir plus

Il y a au fond 2 problèmes distincts :

  • la compréhension en chimie du fait que les molécules sont constituées d'atomes élémentaires et échangent ces atomes lors d'une réaction chimique pour donner d'autres molécules (de propriétés différentes).
  • le fait que ces « particules » (molécules ou atomes), dans un état gazeux dit parfait, occupent toutes le même volume moyen : soit 22,414 L sous une pression de 1,01325×10 Pa et une température de 273,15 K, pour le nombre de particules égal au nombre d'Avogadro : cette mesure relève plutôt de la physique.

Gassendi rénove la théorie atomique (1638) ; le premier théorème de théorie cinétique des gaz date de Daniel Bernoulli en 1738. Mais il sera oublié jusqu'à Clausius, vers 1855. La raison en est qu'il faut que la chimie se dépêtre de l'alchimie grâce à la balance.

[modifier] Atomes et Chimie

Il fallut extraire les corps purs des mélanges (piège des eutectiques et des azéotropes, piège des cristaux isomorphes) : après Wenzel (1782), Richter (1795), la querelle Berthollet-Proust (1799-1806), il devint admis qu'un corps pur est composé des mêmes corps simples dans les mêmes proportions discontinues et définies : eau et eau oxygénée sont deux corps purs différents. John Dalton (1808) propose la classification en corps binaire (A+B->AB), ternaire (A+2B->AB2), indiquant clairement sa vision atomique des molécules, et donne les masses relatives des « équivalents ». Berzélius proposera de nommer chaque élément par un symbole. Gay-Lussac établit pour les composés gazeux les lois des volumes en proportions définies (1809).

La difficulté était celle-ci : en eudiométrie, la décomposition de l'eau donne 2 volumes d'hydrogène et 1 volume d'oxygène. La recomposition de l'eau est que ces volumes ne redonnent que 2 volumes de vapeur d'eau :

Le pas immense que franchit Avogadro est d'admettre l'existence du dihydrogène et du dioxygène, qui devaient se décomposer pour donner deux molécules d'eau H2O ; ce qui permettait de résoudre les conflits entre Dalton et Gay-Lussac. Mais ces « décomposition » et recombinaison étaient en tout état de cause fort problématiques. Il est peu écouté : la théorie de Berzélius ne permet pas de rendre compte de l'existence de la « molécule » H2.

Néanmoins Berzélius perfectionne la notion de masse relative des éléments (la loi de Dulong et Petit joue alors un rôle important (1819) ; la loi cristalline de Mitscherlich (1820) aussi).

Dumas, en 1826, est adepte convaincu du système atomique de Dalton, et permet par sa fameuse loi (d = M/29) de déterminer moult masses molaires). Mais convaincu par la philosophie positiviste, il rejette l'atomisme en 1836 : ses vapeurs de phosphore P4, et de soufre S6, puis graduellement S2 l'ont, à l'évidence, contrarié.

Gmelin, anti-atomiste convaincu, ne fait toujours pas la différence entre atome et molécule et donne la Table des Equivalents (1830).

Faraday publie ses équivalents électrochimiques ioniques dans les lois de l'électrolyse (1833).

Conclusion : faute de comprendre H2, P4 et S6, la théorie atomique achoppe, malgré Gaudin (1833), qui, sans succès, reprend Avogadro, et définit le dihydrogène, le tétraphosphore, etc. et distingue parfaitement entre MOLÉCULE, faite d'ATOMES éléments.

La CHIMIE ORGANIQUE (Wöhler, synthèse de l'urée (1828)) et son omniprésente covalence, fait oublier Berzélius ; et Gerhardt (1843), puis Laurent (1846) redécouvrent ce qu'avait dit Gaudin. La thermochimie naissante des années 45 confirme : il faut briser H2 et Cl2 pour donner 2 HCl.

Restaient les étranges variations « graduelles ». Cannizzaro sauve la théorie atomique : il y a dissociation progressive. Sainte-Claire Deville confirme. On est en 1856.

Le congrès de Karlsruhe (1860) enterre la hache de guerre entre équivalentistes et atomistes ; mais clairement les atomistes seront avantagés dans leur compréhension de la chimie.

[modifier] Physiciens et la taille des atomes

La théorie du calorique de Black vient embourber la physique du XVIIIe. Mais en Angleterre, Joule (1848) redécouvre piètrement Bernoulli. Kronig (1856) améliore ; Clausius (1857) vient enfin et trouve la vitesse quadratique moyenne.

u = \sqrt{\frac{3\times RT}{M}}, soit 485m/s \times \sqrt{T/273}\times \sqrt{\frac{29}{M}}.

Et il retrouve l'explication d'Avogadro, de Gaudin et autres : l'hydrogène est du dihydrogène ! Verdet le lui persiffla.

La vitesse moyenne était très élevée ; mais Clausius invente la notion géométrique capitale de libre parcours moyen

L\sim\frac{1}{nS} , avec S = section efficace.

La théorie cinétique des gaz est née ; l'ordre de grandeur du coefficient de diffusion sera D = 1 / 3.u.L en m2·s-1, comme la viscosité cinématique. Loschmidt en tirera (1865) la valeur de la taille des atomes et le nombre d'Avogadro à la stupeur des physiciens, et W. Thomson-Lord Kelvin rassure la communauté (size of atoms ; Nature 1(1870),551-553). Il essaiera vainement de leur donner une structure de nœuds, mais non, ce sera en 1926, l'équation de Schrödinger, puis les équations de Hartree-Fock qui donneront la solution actuelle.

Maxwell, avec ses visions prémonitoires de grand physicien, a déjà compris : pour qu'un véritable système d'unités international naisse, il conviendra de l'établir sur la base des atomes : à peine mesurée, la constante d'Avogadro n'a plus d'intérêt autre qu'anthropomorphique ; dans quelques décennies, il est probable qu'elle ne sera plus enseignée qu'en chimie ; un physicien peut très bien s'en passer ; pas un ingénieur, censé travailler pour l'Homme.

[modifier] Notes et références

  1. ab Unité de quantité de matière
  2. cf. Determination of the Avogadro constant via the silicon route, Metrologia 40

[modifier] Voir aussi