Invariance de Lorentz

Un article de Wikipédia, l'encyclopédie libre.

Dans le cadre de la relativité restreinte (qui reste valable aussi en relativité générale), une quantité est dite invariante de Lorentz, on dit aussi scalaire de Lorentz, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz. Cela revient à dire que sa valeur est la même dans tous les référentiels galiléens.

Le premier exemple de quantité invariante de Lorentz est la métrique de Minkowski[1] \eta_{\mu\nu}\,. Si on considère une transformation de Lorentz représentée par \Lambda\,[2], alors on a par définition des transformations de Lorentz


\Lambda^t\eta\Lambda=\eta
\,

si on utilise la notation matricielle, ou


{\Lambda^{\mu'}}_\mu{\Lambda^{\nu'}}_\nu\eta_{\mu' \nu'}=\eta_{\mu\nu}
\,

si on adopte la notation d'indices plus commune en physique. On a adopté pour cette dernière la convention de sommation d'Einstein qui somme implicitement selon les quatre directions tout indice apparaissant à la fois en haut et en bas d'une expression.

A partir de cette quantité invariante fondamentale on peut en construire d'autres. Par exemple si on considère le quadrivecteur d'énergie-impulsion [3],


P^{\mu}=
\begin{pmatrix}
E\\
\vec{p}\,c
\end{pmatrix}
\,

constitué de l'énergie E\, et de l'impulsion \vec{p}\,. Il n'est pas invariant de Lorentz car il se transforme de la façon suivante


P^\mu\rightarrow{\Lambda^\mu}_\nu P^\nu
\,

Mais par contre on peut construire la quantité quadratique suivante par contraction de ce quadrivecteur en utilisant la métrique


P^2\equiv P^{\mu}P_{\mu}\equiv\eta_{\mu\nu}P^{\mu}P^{\nu}=-E^2+p^2c^2=-m^2c^4
\,

qui définit la masse en relativité restreinte. Cette quantité est un invariant de Lorentz, car si Pμ subit une transformation de Lorentz, la quantité PμPμ devient :

P^\mu P_\mu=\eta_{\mu\nu}P^\mu P_\nu\rightarrow\eta_{\mu\nu}({\Lambda^\mu}_\rho P^\rho)({\Lambda^\nu}_\sigma P^\sigma)=\eta_{\rho\sigma}P^\rho P^\sigma=P^\rho P_\rho

où on a utilisé l'invariance de la métrique énoncée au début de cette page pour l'avant-dernière étape du calcul. Comme μ et ρ sont des indices muets, on a bien retrouvé la norme du quadrivecteur P, qui est donc une grandeur conservée.

Dans cette démonstration, nous n'avons à aucun moment utilisé l'expression explicite de P, ce qui signifie que la norme de n'importe quel quadrivecteur est une grandeur conservée par les transformations de Lorentz.

Le fait qu'une quantité soit invariante permet d'obtenir des résultats intéressants en choisissant des référentiels particuliers. Par exemple, si on considère le cas d'une particule de masse non-nulle m\, alors on peut considérer le référentiel de repos dans lequel on a \vec{p}=0\,. On obtient alors la célèbre identité


E=mc^2
\,

Par contre dans le cas d'une particule de masse nulle, comme le photon, il n'est pas possible de trouver un tel référentiel mais on a alors la relation


-E^2+p^2c^2=0
\,.

[modifier] Notes

  1. On utilise par la suite ici la signature (-,+,+,+)\, pour la métrique.
  2. C'est une matrice 4\times 4.
  3. Lorsqu'on se place a priori dans le cadre de la mécanique relativiste il est d'usage d'oublier le préfixe quadri et de parler plus simplement de vecteur ou dimpulsion.

[modifier] Voir aussi